58 research outputs found

    Bat Flies and Their Microparasites: Current Knowledge and Distribution

    Get PDF
    Bats are the second most diverse mammalian group, playing keystone roles in ecosystems but also act as reservoir hosts for numerous pathogens. Due to their colonial habits which implies close contacts between individuals, bats are often parasitized by multiple species of micro- and macroparasites. The particular ecology, behavior, and environment of bat species may shape patterns of intra- and interspecific pathogen transmission, as well as the presence of specific vectorial organisms. This review synthetizes information on a multi-level parasitic system: bats, bat flies and their microparasites. Bat flies (Diptera: Nycteribiidae and Streblidae) are obligate, hematophagous ectoparasites of bats consisting of ~500 described species. Diverse parasitic organisms have been detected in bat flies including bacteria, blood parasites, fungi, and viruses, which suggest their vectorial potential. We discuss the ecological epidemiology of microparasites, their potential physiological effects on both bats and bat flies, and potential research perspectives in the domain of bat pathogens. For simplicity, we use the term microparasite throughout this review, yet it remains unclear whether some bacteria are parasites or symbionts of their bat fly hosts

    Relative effects of urbanisation, deforestation, and agricultural development on mosquito communities

    Get PDF
    Context: Despite numerous studies that showed negative effects of landscape anthropisation on species abundance and diversity, the relative effects of urbanisation, deforestation, and agricultural development as well as the spatial extent at which they act are much less studied. This is particularly the case for mosquitoes, which are the most important arthropods affecting human health. Objectives: We determined the scale of effect of these three landscape anthropisation components on mosquito abundance and diversity. We then assessed which landscape variables had the most effect as well as their independent positive or negative effects. Methods: We used mosquito data collected by Schaffner and Mathis (2013) in 16 sampling sites in Switzerland. We measured forest, urban and agricultural amounts in 485 concentric landscapes (from 150 to 5000 m radius) around each sampling site. We then identified the spatial extent at which each landscape metric best predicted abundance and diversity of mosquito species and compared the effect size of each landscape component on each response variable. Results: In Switzerland, urbanisation and deforestation have a greater influence on mosquito diversity than agricultural development, and do not act at the same scale. Conversely, the scale of effect on mosquito abundance is relatively similar across the different landscape anthropisation components or across mosquito species, except for Culex pipiens. However, the effect size of each landscape component varies according to mosquito species. Conclusion: The scale of management must be selected according to the conservation concern. In addition, a multi-scale approach is recommended for effective mosquito community management. Supplementary information: The online version contains supplementary material available at 10.1007/s10980-023-01634-w [Titel anhand dieser DOI in Citavi-Projekt übernehmen]

    Spring reproductive success influences autumnal malarial load in a passerine bird

    Get PDF
    Although avian haemosporidian parasites are widely used as model organisms to study fundamental questions in evolutionary and behavorial ecology of host-parasite inter- actions, some of their basic characteristics, such as seasonal variations in within-host density, are still mostly unknown. In addition, their interplay with host reproductive suc- cess in the wild seems to depend on the interaction of many factors, starting with host and parasite species and the temporal scale under study. Here, we monitored the par- asitemia of two haemosporidian parasites – Plasmodium relictum (lineage SGS1) and P. homonucleophilum (lineage SW2) – in two wild populations of great tits (Parus major) in Switzerland over three years, to characterize their dynamics. We also collected data on birds’ reproductive output – laying date, clutch size, fledging success – to determine whether they were associated with parasitemia before (winter), during (spring) and after (autumn) breeding season. Parasitemia of both species dramatically increased in spring, in a way that was correlated to parasitemia in winter. Parasitemia before and during breeding season did not explain reproductive success. However, the birds which fledged the more chicks had higher parasitemia in autumn, which was not associated with their parasitemia in previous spring. Our results tend to indicate that high haemosporidian parasite loads do not impair reproduction in great tits, but high resource allocation into reproduction can leave birds less able to maintain low parasitemia over the following months

    Polyctenidae (Hemiptera: Cimicoidea) species in the Afrotropical region: Distribution, host specificity, and first insights to their molecular phylogeny

    Get PDF
    Polyctenidae bugs are rarely studied, hematophagous, and highly specialized ectoparasites of bats. There are only 32 described species worldwide, including six species in the Afrotropical region. Knowledge on these parasites is limited, and most studies are restricted to the New World polyctenid species. Here we report additional records of Adroctenes horvathi from Kenya and South Africa, as well as Hypoctenes faini from Rwanda. We present an updated list of published polyctenid records in the Afrotropical region indicating their host specificity and their geographical distribution. We report global infection patterns and sex ratio of polyctenids based on previously published data, including Old and New World species. Lastly, we demonstrate the first molecular phylogeny of Polyctenidae, showing their phylogenetic relationship with the closely related family Cimicidae

    Senescence in cell oxidative status in two bird species with contrasting life expectancy

    Get PDF
    Oxidative stress occurs when the production of reactive oxygen species (ROS) by an organism exceeds its capacity to mitigate the damaging effects of the ROS. Consequently, oxidative stress hypotheses of ageing argue that a decline in fecundity and an increase in the likelihood of death with advancing age reported at the organism level are driven by gradual disruption of the oxidative balance at the cellular level. Here, we measured erythrocyte resistance to oxidative stress in the same individuals over several years in two free-living bird species with contrasting life expectancy, the great tit (known maximum life expectancy is 15.4years) and the Alpine swift (26years). In both species, we found evidence for senescence in cell resistance to oxidative stress, with patterns of senescence becoming apparent as subjects get older. In the Alpine swift, there was also evidence for positive selection on cell resistance to oxidative stress, the more resistant subjects being longer lived. The present findings of inter-individual selection and intra-individual deterioration in cell oxidative status at old age in free-living animals support a role for oxidative stress in the ageing of wild animals

    Host conservation through their parasites: molecular surveillance of vector-borne microorganisms in bats using ectoparasitic bat flies

    Get PDF
    Most vertebrates host a wide variety of haematophagous parasites, which may play an important role in the transmission of vector-borne microorganisms to hosts. Surveillance is usually performed by collecting blood and/or tissue samples from vertebrate hosts. There are multiple methods to obtain samples, which can be stored for decades if properly kept. However, blood sampling is considered an invasive method and may possibly be harmful to the sampled individual. In this study, we investigated the use of ectoparasites as a tool to acquire molecular information about the presence and diversity of infectious microorganism in host populations. We tested the presence of three distinct vector-borne microorganisms in both bat blood and bat flies: Bartonella bacteria, malaria-like Polychromophilus sp. (Apicomplexa), and Trypanosoma sp. (Kinetoplastea). We detected the presence of these microorganisms both in bats and in their bat flies, with the exception of Trypanosoma sp. in South African bat flies. Additionally, we found Bartonella sp. in bat flies from one population in Spain, suggesting its presence in the host population even if not detected in bats. Bartonella and Polychromophilus infection showed the highest prevalence in both bat and bat fly populations. Single, co- and triple infections were also frequently present in both. We highlight the use of haematophagous ectoparasites to study the presence of infectious microorganism in host blood and its use as an alternative, less invasive sampling method

    The effect of dietary antioxidant supplementation in a vertebrate host on the infection dynamics and transmission of avian malaria to the vector.

    Get PDF
    Host susceptibility to parasites is likely to be influenced by intrinsic factors, such as host oxidative status determined by the balance between pro-oxidant production and antioxidant defences. As a result, host oxidative status acts as an environmental factor for parasites and may constrain parasite development. We evaluated the role of host oxidative status on infection dynamics of an avian malarial parasite by providing canaries (Serinus canaria) with an antioxidant supplementation composed of vitamin E (a lipophilic antioxidant) and olive oil, a source of monounsaturated fatty acids. Another group received a standard, non-supplemented food. Half of the birds in each group where then infected with the haemosporidian parasite, Plasmodium relictum. We monitored the parasitaemia, haematocrit level, and red cell membrane resistance, as well as the transmission success of the parasite to its mosquito vector, Culex pipiens. During the acute phase, the negative effect of the infection was more severe in the supplemented group, as shown by a lower haematocrit level. Parasitaemia was lower in the supplemented group during the chronic phase only. Mosquitoes fed on supplemented hosts were more often infected than mosquitoes fed on the control group. These results suggest that dietary antioxidant supplementation conferred protection against Plasmodium in the long term, at the expense of a short-term negative effect. Malaria parasites may take advantage of antioxidants, as shown by the increased transmission rate in the supplemented group. Overall, our results suggest an important role of oxidative status in infection outcome and parasite transmission
    corecore