377 research outputs found

    Time Delay Measurements for the Cluster-lensed Sextuple Quasar SDSS J2222+2745

    Full text link
    We report first results from an ongoing monitoring campaign to measure time delays between the six images of the quasar SDSS\,J2222++2745, gravitationally lensed by a galaxy cluster. The time delay between A and B, the two most highly magnified images, is measured to be τAB=47.7±6.0\tau_{\rm AB} = 47.7 \pm 6.0 days (95\% confidence interval), consistent with previous model predictions for this lens system. The strong intrinsic variability of the quasar also allows us to derive a time delay value of τCA=722±24\tau_{\rm CA} = 722 \pm 24 days between image C and A, in spite of modest overlap between their light curves in the current data set. Image C, which is predicted to lead all the other lensed quasar images, has undergone a sharp, monotonic flux increase of 60-75\% during 2014. A corresponding brightening is firmly predicted to occur in images A and B during 2016. The amplitude of this rise indicates that time delays involving all six known images in this system, including those of the demagnified central images D-F, will be obtainable from further ground-based monitoring of this system during the next few years.Comment: 9 pages, 9 figures, Version accepted for publication in Ap

    On the lack of correlation between Mg II 2796, 2803 Angstrom and Lyman alpha emission in lensed star-forming galaxies

    Get PDF
    We examine the Mg II 2796, 2803 Angstrom, Lyman alpha, and nebular line emission in five bright star-forming galaxies at 1.66<z<1.91 that have been gravitationally lensed by foreground galaxy clusters. All five galaxies show prominent Mg II emission and absorption in a P Cygni profile. We find no correlation between the equivalent widths of Mg II and Lyman alpha emission. The Mg II emission has a broader range of velocities than do the nebular emission line profiles; the Mg II emission is redshifted with respect to systemic by 100 to 200 km/s. When present, Lyman alpha is even more redshifted. The reddest components of Mg II and Lyman alpha emission have tails to 500-600 km/s, implying a strong outflow. The lack of correlation in the Mg II and Lyman alpha equivalent widths, the differing velocity profiles, and the high ratios of Mg II to nebular line fluxes together suggest that the bulk of Mg II emission does not ultimately arise as nebular line emission, but may instead be reprocessed stellar continuum emission.Comment: The Astrophysical Journal, in press. 6 pages, 2 figure

    Dynamical Masses of RCS Galaxy Clusters

    Full text link
    A multi-object spectroscopy follow-up survey of galaxy clusters selected from the Red-sequence Cluster Survey (RCS) is being completed. About forty clusters were chosen with redshifts from 0.15 to 0.6, and in a wide range of richnesses. One of the main science drivers of this survey is a study of internal dynamics of clusters. We present some preliminary results for a subset of the clusters, including the correlation of optical richness with mass, and the mass-to-light ratio as a function of cluster mass.Comment: 5 pages, 5 figures, to appear in the Proceedings of IAU Colloquium 195: "Outskirts of Galaxy Clusters: intense life in the suburbs", Torino Italy, March 200

    Constraining the metallicities, ages, star formation histories, and ionizing continua of extragalactic massive star populations

    Full text link
    We infer the properties of massive star populations using the far-ultraviolet stellar continua of 61 star-forming galaxies: 42 at low-z observed with HST and 19 at z~2 from the Megasaura sample. We fit each stellar continuum with a linear combination of up to 50 single age and single metallicity Starburst99 models. From these fits, we derive light-weighted ages and metallicities, which agree with stellar wind and photospheric spectral features, and infer the spectral shapes and strengths of the ionizing continua. Inferred light-weighted stellar metallicities span 0.05-1.5 Z⊙_\odot and are similar to the measured nebular metallicities. We quantify the ionizing continua using the ratio of the ionizing flux at 900\AA\ to the non-ionizing flux at 1500\AA\ and demonstrate the evolution of this ratio with stellar age and metallicity using theoretical single burst models. These single burst models only match the inferred ionizing continua of half of the sample, while the other half are described by a mixture of stellar ages. Mixed age populations produce stronger and harder ionizing spectra than continuous star formation histories, but, contrary to previous studies that assume constant star formation, have similar stellar and nebular metallicities. Stellar population age and metallicity affect the far-UV continua in different and distinguishable ways; assuming a constant star formation history diminishes the diagnostic power. Finally, we provide simple prescriptions to determine the ionizing photon production efficiency (ξion\xi_{ion}) from the stellar population properties. ξion\xi_{ion} has a range of log(ξion)=24.4−25.7\xi_{ion})=24.4-25.7 Hz erg−1^{-1} that depends on stellar age, metallicity, star formation history, and contributions from binary star evolution. These stellar population properties must be observationally determined to determine the number of ionizing photons generated by massive stars.Comment: 31 pages, 23 figures, resubmitted to ApJ after incorporating the referee's comments. Comments encourage

    A z=0.9 supercluster of X-ray luminous, optically-selected, massive galaxy clusters

    Full text link
    We report the discovery of a compact supercluster structure at z=0.9. The structure comprises three optically-selected clusters, all of which are detected in X-rays and spectroscopically confirmed to lie at the same redshift. The Chandra X-ray temperatures imply individual masses of ~5x10^14 Msun. The X-ray masses are consistent with those inferred from optical--X-ray scaling relations established at lower redshift. A strongly-lensed z~4 Lyman break galaxy behind one of the clusters allows a strong-lensing mass to be estimated for this cluster, which is in good agreement with the X-ray measurement. Optical spectroscopy of this cluster gives a dynamical mass in good agreement with the other independent mass estimates. The three components of the RCS2319+00 supercluster are separated from their nearest neighbor by a mere <3 Mpc in the plane of the sky and likely <10 Mpc along the line-of-sight, and we interpret this structure as the high-redshift antecedent of massive (~10^15 Msun) z~0.5 clusters such as MS0451.5-0305.Comment: ApJ Letters accepted. 5 pages in emulateapj, 3 figure

    Pair Analysis of Field Galaxies from the Red-Sequence Cluster Survey

    Full text link
    We study the evolution of the number of close companions of similar luminosities per galaxy (Nc) by choosing a volume-limited subset of the photometric redshift catalog from the Red-Sequence Cluster Survey (RCS-1). The sample contains over 157,000 objects with a moderate redshift range of 0.25 < z < 0.8 and absolute magnitude in Rc (M_Rc) < -20. This is the largest sample used for pair evolution analysis, providing data over 9 redshift bins with about 17,500 galaxies in each. After applying incompleteness and projection corrections, Nc shows a clear evolution with redshift. The Nc value for the whole sample grows with redshift as (1+z)^m, where m = 2.83 +/- 0.33 in good agreement with N-body simulations in a LCDM cosmology. We also separate the sample into two different absolute magnitude bins: -25 < M_Rc < -21 and -21 < M_Rc < -20, and find that the brighter the absolute magnitude, the smaller the m value. Furthermore, we study the evolution of the pair fraction for different projected separation bins and different luminosities. We find that the m value becomes smaller for larger separation, and the pair fraction for the fainter luminosity bin has stronger evolution. We derive the major merger remnant fraction f_rem = 0.06, which implies that about 6% of galaxies with -25 < M_Rc < -20 have undergone major mergers since z = 0.8.Comment: ApJ, in pres

    Accurately predicting the escape fraction of ionizing photons using restframe ultraviolet absorption lines

    Get PDF
    The fraction of ionizing photons that escape high-redshift galaxies sensitively determines whether galaxies reionized the early universe. However, this escape fraction cannot be measured from high-redshift galaxies because the opacity of the intergalactic medium is large at high redshifts. Without methods to indirectly measure the escape fraction of high-redshift galaxies, it is unlikely that we will know what reionized the universe. Here, we analyze the far-ultraviolet (UV) H I (Lyman series) and low-ionization metal absorption lines of nine low-redshift, confirmed Lyman continuum emitting galaxies. We use the H I covering fractions, column densities, and dust attenuations measured in a companion paper to predict the escape fraction of ionizing photons. We find good agreement between the predicted and observed Lyman continuum escape fractions (within 1.4σ1.4\sigma) using both the H I and ISM absorption lines. The ionizing photons escape through holes in the H I, but we show that dust attenuation reduces the fraction of photons that escape galaxies. This means that the average high-redshift galaxy likely emits more ionizing photons than low-redshift galaxies. Two other indirect methods accurately predict the escape fractions: the Lyα\alpha escape fraction and the optical [O III]/[O II] flux ratio. We use these indirect methods to predict the escape fraction of a sample of 21 galaxies with rest-frame UV spectra but without Lyman continuum observations. Many of these galaxies have low escape fractions (fesc≤1f_{\rm esc} \le 1\%), but 11 have escape fractions >1>1\%. The methods presented here will measure the escape fractions of high-redshift galaxies, enabling future telescopes to determine whether star-forming galaxies reionized the early universe.Comment: Accepted for publication in A&A. 12 pages, 5 figure
    • …
    corecore