38 research outputs found
Multi-Centre, Multi-Vendor and Multi-Disease Cardiac Segmentation: The M&Ms Challenge
The emergence of deep learning has considerably advanced the state-of-the-art in cardiac magnetic resonance (CMR) segmentation. Many techniques have been proposed over the last few years, bringing the accuracy of automated segmentation close to human performance. However, these models have been all too often trained and validated using cardiac imaging samples from single clinical centres or homogeneous imaging protocols. This has prevented the development and validation of models that are generalizable across different clinical centres, imaging conditions or scanner vendors. To promote further research and scientific benchmarking in the field of generalizable deep learning for cardiac segmentation, this paper presents the results of the Multi-Centre, Multi-Vendor and Multi-Disease Cardiac Segmentation (M&Ms) Challenge, which was recently organized as part of the MICCAI 2020 Conference. A total of 14 teams submitted different solutions to the problem, combining various baseline models, data augmentation strategies, and domain adaptation techniques. The obtained results indicate the importance of intensity-driven data augmentation, as well as the need for further research to improve generalizability towards unseen scanner vendors or new imaging protocols. Furthermore, we present a new resource of 375 heterogeneous CMR datasets acquired by using four different scanner vendors in six hospitals and three different countries (Spain, Canada and Germany), which we provide as open-access for the community to enable future research in the field
Debiasing Cardiac Imaging with Controlled Latent Diffusion Models
The progress in deep learning solutions for disease diagnosis and prognosis
based on cardiac magnetic resonance imaging is hindered by highly imbalanced
and biased training data. To address this issue, we propose a method to
alleviate imbalances inherent in datasets through the generation of synthetic
data based on sensitive attributes such as sex, age, body mass index, and
health condition. We adopt ControlNet based on a denoising diffusion
probabilistic model to condition on text assembled from patient metadata and
cardiac geometry derived from segmentation masks using a large-cohort study,
specifically, the UK Biobank. We assess our method by evaluating the realism of
the generated images using established quantitative metrics. Furthermore, we
conduct a downstream classification task aimed at debiasing a classifier by
rectifying imbalances within underrepresented groups through synthetically
generated samples. Our experiments demonstrate the effectiveness of the
proposed approach in mitigating dataset imbalances, such as the scarcity of
younger patients or individuals with normal BMI level suffering from heart
failure. This work represents a major step towards the adoption of synthetic
data for the development of fair and generalizable models for medical
classification tasks. Notably, we conduct all our experiments using a single,
consumer-level GPU to highlight the feasibility of our approach within
resource-constrained environments. Our code is available at
https://github.com/faildeny/debiasing-cardiac-mri
Radiomics-Based Classification of Left Ventricular Non-compaction, Hypertrophic Cardiomyopathy, and Dilated Cardiomyopathy in Cardiovascular Magnetic Resonance
MiocardiopatĂa dilatada; MiocardiopatĂa hipertrĂłfica; RadiĂłmicaDilated cardiomyopathy; Hypertrophic cardiomyopathy; RadiomicsMiocardiopatia dilatada; Miocardiopatia hipertròfica; RadiòmicaLeft Ventricular (LV) Non-compaction (LVNC), Hypertrophic Cardiomyopathy (HCM), and Dilated Cardiomyopathy (DCM) share morphological and functional traits that increase the diagnosis complexity. Additional clinical information, besides imaging data such as cardiovascular magnetic resonance (CMR), is usually required to reach a definitive diagnosis, including electrocardiography (ECG), family history, and genetics. Alternatively, indices of hypertrabeculation have been introduced, but they require tedious and time-consuming delineations of the trabeculae on the CMR images. In this paper, we propose a radiomics approach to automatically encode differences in the underlying shape, gray-scale and textural information in the myocardium and its trabeculae, which may enhance the capacity to differentiate between these overlapping conditions. A total of 118 subjects, including 35 patients with LVNC, 25 with HCM, 37 with DCM, as well as 21 healthy volunteers (NOR), underwent CMR imaging. A comprehensive radiomics characterization was applied to LV short-axis images to quantify shape, first-order, co-occurrence matrix, run-length matrix, and local binary patterns. Conventional CMR indices (LV volumes, mass, wall thickness, LV ejection fraction—LVEF—), as well as hypertrabeculation indices by Petersen and Jacquier, were also analyzed. State-of-the-art Machine Learning (ML) models (one-vs.-rest Support Vector Machine—SVM—, Logistic Regression—LR—, and Random Forest Classifier—RF—) were used for one-vs.-rest classification tasks. The use of radiomics models for the automated diagnosis of LVNC, HCM, and DCM resulted in excellent one-vs.-rest ROC-AUC values of 0.95 while generating these results without the need for the delineation of the trabeculae. First-order and texture features resulted to be among the most discriminative features in the obtained radiomics signatures, indicating their added value for quantifying relevant tissue patterns in cardiomyopathy differential diagnosis.This publication was partially funded by the European Union's Horizon 2020 research and innovation euCanSHare project under grant agreement No 825903. KL received funding from the Spanish Ministry of Science, Innovation and Universities under grant agreement RTI2018-099898-B-I00. AG has received funding from the Spanish Ministry of Science, Innovation and Universities (IJC2018-037349-I)
Data preparation for artificial intelligence in medical imaging: A comprehensive guide to open-access platforms and tools
The vast amount of data produced by today's medical imaging systems has led medical professionals to turn to novel technologies in order to efficiently handle their data and exploit the rich information present in them. In this context, artificial intelligence (AI) is emerging as one of the most prominent solutions, promising to revolutionise every day clinical practice and medical research. The pillar supporting the development of reliable and robust AI algorithms is the appropriate preparation of the medical images to be used by the AI-driven solutions. Here, we provide a comprehensive guide for the necessary steps to prepare medical images prior to developing or applying AI algorithms. The main steps involved in a typical medical image preparation pipeline include: (i) image acquisition at clinical sites, (ii) image de-identification to remove personal information and protect patient privacy, (iii) data curation to control for image and associated information quality, (iv) image storage, and (v) image annotation. There exists a plethora of open access tools to perform each of the aforementioned tasks and are hereby reviewed. Furthermore, we detail medical image repositories covering different organs and diseases. Such repositories are constantly increasing and enriched with the advent of big data. Lastly, we offer directions for future work in this rapidly evolving field
Cardiometabolic risk estimation using exposome data and machine learning
Background: The human exposome encompasses all exposures that individuals encounter throughout their lifetime. It is now widely acknowledged that health outcomes are influenced not only by genetic factors but also by the interactions between these factors and various exposures. Consequently, the exposome has emerged as a significant contributor to the overall risk of developing major diseases, such as cardiovascular disease (CVD) and diabetes. Therefore, personalized early risk assessment based on exposome attributes might be a promising tool for identifying high-risk individuals and improving disease prevention. Objective: Develop and evaluate a novel and fair machine learning (ML) model for CVD and type 2 diabetes (T2D) risk prediction based on a set of readily available exposome factors. We evaluated our model using internal and external validation groups from a multi-center cohort. To be considered fair, the model was required to demonstrate consistent performance across different sub-groups of the cohort. Methods: From the UK Biobank, we identified 5,348 and 1,534 participants who within 13 years from the baseline visit were diagnosed with CVD and T2D, respectively. An equal number of participants who did not develop these pathologies were randomly selected as the control group. 109 readily available exposure variables from six different categories (physical measures, environmental, lifestyle, mental health events, sociodemographics, and early-life factors) from the participant's baseline visit were considered. We adopted the XGBoost ensemble model to predict individuals at risk of developing the diseases. The model's performance was compared to that of an integrative ML model which is based on a set of biological, clinical, physical, and sociodemographic variables, and, additionally for CVD, to the Framingham risk score. Moreover, we assessed the proposed model for potential bias related to sex, ethnicity, and age. Lastly, we interpreted the model's results using SHAP, a state-of-the-art explainability method. Results: The proposed ML model presents a comparable performance to the integrative ML model despite using solely exposome information, achieving a ROC-AUC of 0.78±0.01 and 0.77±0.01 for CVD and T2D, respectively. Additionally, for CVD risk prediction, the exposome-based model presents an improved performance over the traditional Framingham risk score. No bias in terms of key sensitive variables was identified. Conclusions: We identified exposome factors that play an important role in identifying patients at risk of CVD and T2D, such as naps during the day, age completed full-time education, past tobacco smoking, frequency of tiredness/unenthusiasm, and current work status. Overall, this work demonstrates the potential of exposome-based machine learning as a fair CVD and T2D risk assessment tool.</p
A structural heart-brain axis mediates the association between cardiovascular risk and cognitive function
Elevated vascular disease risk associates with poorer cognitive function, but the mechanism for this link is poorly understood. A leading theory, the structural-functional model argues that vascular risk may drive adverse cardiac remodelling, which, in turn, leads to chronic cerebral hypoperfusion and subsequent brain structural damage. This model predicts that variation in heart and brain structure should associate with both greater vascular risk and lower cognitive function. This study tests that prediction in a large sample of the UK Biobank (N = 11,962). We assemble and summarise vascular risk factors, cardiac magnetic resonance radiomics, brain structural and diffusion MRI indices, and cognitive assessment. We also extract “heart-brain axes” capturing the covariation in heart and brain structure. Many heart and brain measures partially explain the vascular risk—cognitive function association, like left ventricular end-diastolic volume and grey matter volume. Notably, a heart-brain axis, capturing correlation between lower myocardial intensity, lower grey matter volume, and poorer thalamic white matter integrity, completely mediates the association, supporting the structural-functional model. Our findings also complicate this theory by finding that brain structural variation cannot completely explain the heart structure—cognitive function association. Our results broadly offer evidence for the structural functional hypothesis, identify imaging biomarkers for this association by considering covariation in heart and brain structure, and generate novel hypotheses about how cardiovascular risk may link to cognitive function
Radiomics-Based Classification of Left Ventricular Non-compaction, Hypertrophic Cardiomyopathy, and Dilated Cardiomyopathy in Cardiovascular Magnetic Resonance
Left Ventricular (LV) Non-compaction (LVNC), Hypertrophic Cardiomyopathy (HCM), and Dilated Cardiomyopathy (DCM) share morphological and functional traits that increase the diagnosis complexity. Additional clinical information, besides imaging data such as cardiovascular magnetic resonance (CMR), is usually required to reach a definitive diagnosis, including electrocardiography (ECG), family history, and genetics. Alternatively, indices of hypertrabeculation have been introduced, but they require tedious and time-consuming delineations of the trabeculae on the CMR images. In this paper, we propose a radiomics approach to automatically encode differences in the underlying shape, gray-scale and textural information in the myocardium and its trabeculae, which may enhance the capacity to differentiate between these overlapping conditions. A total of 118 subjects, including 35 patients with LVNC, 25 with HCM, 37 with DCM, as well as 21 healthy volunteers (NOR), underwent CMR imaging. A comprehensive radiomics characterization was applied to LV short-axis images to quantify shape, first-order, co-occurrence matrix, run-length matrix, and local binary patterns. Conventional CMR indices (LV volumes, mass, wall thickness, LV ejection fraction-LVEF-), as well as hypertrabeculation indices by Petersen and Jacquier, were also analyzed. State-of-the-art Machine Learning (ML) models (one-vs.-rest Support Vector Machine-SVM-, Logistic Regression-LR-, and Random Forest Classifier-RF-) were used for one-vs.-rest classification tasks. The use of radiomics models for the automated diagnosis of LVNC, HCM, and DCM resulted in excellent one-vs.-rest ROC-AUC values of 0.95 while generating these results without the need for the delineation of the trabeculae. First-order and texture features resulted to be among the most discriminative features in the obtained radiomics signatures, indicating their added value for quantifying relevant tissue patterns in cardiomyopathy differential diagnosis
New imaging signatures of cardiac alterations in ischaemic heart disease and cerebrovascular disease using CMR radiomics
Background: Ischaemic heart disease (IHD) and cerebrovascular disease are two closely inter-related clinical entities. Cardiovascular magnetic resonance (CMR) radiomics may capture subtle cardiac changes associated with these two diseases providing new insights into the brain-heart interactions.Objective: To define the CMR radiomics signatures for IHD and cerebrovascular disease and study their incremental value for disease discrimination over conventional CMR indices.Methods: We analysed CMR images of UK Biobank's subjects with pre-existing IHD, ischaemic cerebrovascular disease, myocardial infarction (MI), and ischaemic stroke (IS) (n = 779, 267, 525, and 107, respectively). Each disease group was compared with an equal number of healthy controls. We extracted 446 shape, first-order, and texture radiomics features from three regions of interest (right ventricle, left ventricle, and left ventricular myocardium) in end-diastole and end-systole defined from segmentation of short-axis cine images. Systematic feature selection combined with machine learning (ML) algorithms (support vector machine and random forest) and 10-fold cross-validation tests were used to build the radiomics signature for each condition. We compared the discriminatory power achieved by the radiomics signature with conventional indices for each disease group, using the area under the curve (AUC), receiver operating characteristic (ROC) analysis, and paired t-test for statistical significance. A third model combining both radiomics and conventional indices was also evaluated.Results: In all the study groups, radiomics signatures provided a significantly better disease discrimination than conventional indices, as suggested by AUC (IHD:0.82 vs. 0.75; cerebrovascular disease: 0.79 vs. 0.77; MI: 0.87 vs. 0.79, and IS: 0.81 vs. 0.72). Similar results were observed with the combined models. In IHD and MI, LV shape radiomics were dominant. However, in IS and cerebrovascular disease, the combination of shape and intensity-based features improved the disease discrimination. A notable overlap of the radiomics signatures of IHD and cerebrovascular disease was also found.Conclusions: This study demonstrates the potential value of CMR radiomics over conventional indices in detecting subtle cardiac changes associated with chronic ischaemic processes involving the brain and heart, even in the presence of more heterogeneous clinical pictures. Radiomics analysis might also improve our understanding of the complex mechanisms behind the brain-heart interactions during ischaemia
Estimation of biological heart age using cardiovascular magnetic resonance radiomics
We developed a novel interpretable biological heart age estimation model using cardiovascular magnetic resonance radiomics measures of ventricular shape and myocardial character. We included 29,996 UK Biobank participants without cardiovascular disease. Images were segmented using an automated analysis pipeline. We extracted 254 radiomics features from the left ventricle, right ventricle, and myocardium of each study. We then used Bayesian ridge regression with tenfold cross-validation to develop a heart age estimation model using the radiomics features as the model input and chronological age as the model output. We examined associations of radiomics features with heart age in men and women, observing sex-diferential patterns. We subtracted actual age from model estimated heart age to calculate a “heart age delta”, which we considered as a measure of heart aging. We performed a phenome-wide association study of 701 exposures with heart age delta. The strongest correlates of heart aging were measures of obesity, adverse serum lipid markers, hypertension, diabetes, heart rate, income, multimorbidity, musculoskeletal health, and respiratory health. This technique provides a new method for phenotypic assessment relating to cardiovascular aging; further studies are required to assess whether it provides incremental risk information over current approaches