8 research outputs found

    Microstructure and Small-Scale Deformation of Al₀.₇CoCrFeNi High-Entropy Alloy

    Get PDF
    Novel engineering materials are continuously being designed for structural applications, particularly for improved mechanical properties such as high strength, enhanced ductility, and great thermal stability. High entropy alloys (HEAs) as an emerging material can be distinguished from other metal systems as a five-or-more-component alloy in which the constituents are in equiatomic or near equiatomic proportions, thereby maximizing the configurational entropy. This thesis is focused on understanding the microstructure of an aluminum-containing HEA in relation to its small-scale mechanical properties. Physical phenomena such as size-effect, slip sizes, temperature effect, crystallographic orientation effect, influence of interface, and small perturbations in atom motions are studied. Uniaxial compression experiments were conducted on nanopillars fabricated from the individual phases (i.e. Face Centered Cubic (FCC) and Body Cubic Centered (BCC) present in the Al0.7CoCrFeNi HEA. We observed the presence of a size-effect in both phases, with smaller pillars having substantially greater strengths compared with bulk and with larger sized samples. The size-effect power law exponent m in τy α D-m for the BCC phase was − 0.28, which is lower than that of most pure BCC metals, and the FCC phase had m = − 0.66, which is equivalent to most pure FCC metals. These results are discussed in the framework of nano-scale plasticity and the intrinsic lattice resistance through the interplay of the internal (microstructural) and external (dimensional) size effects. In addition to higher stresses observed at cryogenic temperature in both phases, the microstructural analysis of the deformed pillar via Transmission Electron Microscopy (TEM) showed that FCC pillars undergo deformation by planar-slip dislocation activities even at temperatures of 40 K. Bulk FCC HEAs have been studied to deform via twinning mechanism at low temperatures. The BCC phase, however, confirms dislocation–driven plasticity and twinning at 40 K. These results are explained from the intrinsic nature of the dislocation structure of both phases at low temperatures. The effect of an 'interphase' in micron-sized HEA pillars was studied from different orientation configurations of the BCC | FCC phases. Slip transmission across the phases was observed in high symmetry orientation combination of both phases. Configurations having a mixture of both low and high symmetry orientations vary in deformation mechanisms. We explain these findings in relation to crystal orientation effect of the combining half pillars, competing plastic mechanisms, dislocation – boundary interactions and how these findings correlate with their mechanical response. Also, we conducted dynamic mechanical analysis on the FCC and BCC HEA nanopillars to reveal their damping properties. Higher storage modulus and damping factor values were observed in FCC and BCC the nanopillars. Storage Moduli in the nano-sized HEAs are a factor of 2 greater than both bulk BCC and FCC HEA counterparts. The difference is due to greater surface contribution of the external atoms in the small-sized HEAs.</p

    Effect of temperature on small-scale deformation of individual face-centered-cubic and body-centered-cubic phases of an Al_(0.7)CoCrFeNi high-entropy alloy

    Get PDF
    High-entropy alloys (HEAs) represent an important class of structural materials because of their high strength, ductility, and thermal stability. Understanding the mechanical response of isolated phases of a FCC/BCC dual-phase HEA is integral to understanding the mechanical properties of these alloys in the bulk. We investigate the compressive response of single-crystalline cylinders with diameters between 400 nm and 2 μm excised from individual grains within FCC and BCC phases of the dual-phase Al_(0.7)CoCrFeNi HEA at 295 K, 143 K, and 40 K. We observed a “smaller is stronger” size effect in the yield strength as a function of pillar diameter, D, of both alloy phases for all temperatures, with a power-law exponent, m, decreasing with temperature for the FCC phase, and remaining constant for all temperatures in the BCC phase. We found reduced work-hardening rates and more extensive strain bursts during deformation at lower temperatures in all samples. We performed molecular dynamics simulations of similar FCC and BCC HEA compression that displayed deformation dominated by dislocation slip at all temperatures. We discussed theories of low-temperature strengthening in HEAs, compared them to our experimental data and assessed how they manifest in the observed temperature-dependent size effect and work-hardening

    High-Strength Nanotwinned Al Alloys with 9R Phase

    Get PDF
    Light-weight aluminum (Al) alloys have widespread applications. However, most Al alloys have inherently low mechanical strength. Nanotwins can induce high strength and ductility in metallic materials. Yet, introducing high-density growth twins into Al remains difficult due to its ultrahigh stacking-fault energy. In this study, it is shown that incorporating merely several atomic percent of Fe solutes into Al enables the formation of nanotwinned (nt) columnar grains with high-density 9R phase in Al(Fe) solid solutions. The nt Al–Fe alloy coatings reach a maximum hardness of ≈5.5 GPa, one of the strongest binary Al alloys ever created. In situ uniaxial compressions show that the nt Al–Fe alloys populated with 9R phase have flow stress exceeding 1.5 GPa, comparable to high-strength steels. Molecular dynamics simulations reveal that high strength and hardening ability of Al–Fe alloys arise mainly from the high-density 9R phase and nanoscale grain sizes

    High-Strength Nanotwinned Al Alloys with 9R Phase

    Get PDF
    Light-weight aluminum (Al) alloys have widespread applications. However, most Al alloys have inherently low mechanical strength. Nanotwins can induce high strength and ductility in metallic materials. Yet, introducing high-density growth twins into Al remains difficult due to its ultrahigh stacking-fault energy. In this study, it is shown that incorporating merely several atomic percent of Fe solutes into Al enables the formation of nanotwinned (nt) columnar grains with high-density 9R phase in Al(Fe) solid solutions. The nt Al–Fe alloy coatings reach a maximum hardness of ≈5.5 GPa, one of the strongest binary Al alloys ever created. In situ uniaxial compressions show that the nt Al–Fe alloys populated with 9R phase have flow stress exceeding 1.5 GPa, comparable to high-strength steels. Molecular dynamics simulations reveal that high strength and hardening ability of Al–Fe alloys arise mainly from the high-density 9R phase and nanoscale grain sizes

    Microstructure and small-scale size effects in plasticity of individual phases of Al_(0.7)CoCrFeNi High Entropy alloy

    No full text
    High Entropy alloys (HEAs) are solid solution alloys containing five or more principal elements in equal or near equal atomic percent (at %). We synthesized Al_(0.7)CoCrFeNi HEA by vacuum arc melting and homogenized it at 1250 °C for 50 h. The microstructure shows the presence of two phases: the Body-Centered Cubic (BCC: A2+B2) and the Face-Centered Cubic (FCC). Using the Focused Ion Beam, we fabricated single-crystalline cylindrical nano-pillars from each phase within individual grains in the Al_(0.7)CoCrFeNi HEA. These nano-pillars had diameters ranging from 400 nm to 2 μm and were oriented in the [324] direction for the FCC phase and in the [001] direction for the BCC phase. Uniaxial compression experiments revealed that the yield strength is 2.2 GPa for the 400 nm diameter samples in the BCC phase and 1.2 GPa for the equivalent diameter samples in the FCC phase. We observed the presence of a size-effect in both phases, with smaller pillars having substantially greater strengths compared with bulk and with larger-sized samples. The size-effect power exponent for the BCC phase was −0.28, which is lower than that of most pure BCC metals, and the FCC phase had the exponent of −0.66, equivalent to most pure FCC metals. We discuss these results in the framework of nano-scale plasticity and the intrinsic lattice resistance through the interplay of the internal (microstructural) and external (dimensional) size effects

    Evidence for exceptional low temperature ductility in polycrystalline magnesium processed by severe plastic deformation

    No full text
    An investigation was conducted to examine the mechanical behavior and microstructure evolution during deformation of ultrafine-grained pure magnesium at low temperatures within the temperature range of 296–373 K. Discs were processed by high-pressure torsion until saturation in grain refinement. Dynamic hardness testing revealed a gradual increase in strain rate sensitivity up to m ≈ 0.2. High ductility was observed in the ultrafine-grained magnesium including an exceptional elongation of ∼360% in tension at room temperature and stable deformation in micropillar compression. Grain coarsening and an increase in frequency of grain boundaries with misorientations in the range 15°–45° occurred during deformation in tension. The experimental evidence, when combined with an analysis of the deformation behavior, suggests that grain boundary sliding plays a key role in low strain rate deformation of pure magnesium when the grain sizes are at and below ∼5 μm
    corecore