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Figure S1. Microstructural and crystallographic information of Al-xFe (x = 1-10 at.%) films. 

Figure S2. XRD pole figure measurements of the Al-xFe (x = 1-10 at.%) films. 

Figure S3. Microstructure of Al-5.9 at.% Fe. 

Figure S4. The Hall-Petch plot for the Al-Fe specimens and the selected ufg and nc monolithic 

Al and Al-xFe alloys processed via different techniques and hardness vs. solute atom 

concentration of various sputtered Al alloys with selective solutes. 

Figure S5. Methodology to estimate the true stress-strain curves of the deformation volume of nt 

Al-xFe alloys. 

Figure S6. Ex situ pillar compression results of monolithic Al and Al-xFe (x = 2.5 and 5.9 at.%) 

specimens. 

Figure S7. Demonstration of fabrication of 20 µm thick Al-6 at.% Fe coating on Si wafer and in 

situ compressions on 3 µm micropillars of Al-6 at.% Fe specimens. 

Figure S8. Atomistic structures for calculations of bulk stacking fault energies (SFEs), SFEs of 

Al as a function of in-plane atomic percentage of Fe, atomistic configurations to calculate the 

SFEs of surface atomic clusters, schematic representation of the paths of the surface trimer and 

septmer for the calculation of their SFEs and excess energy per surface atom vs. reaction 

coordinate curves for various types of surface atomic clusters for Al-3.1at% Fe. 

Figure S9. MD simulations: 9R stability in monolithic nt Al and Al-5%Fe at room temperature 

and calculated compressive stress vs. strain curves of pure Al and Al-5%Fe. 

Figure S10. Super X EDS and STEM of the Al-2.5%Fe (cross-sectional STEM) and post-

mortem TEM micrographs of deformed Al-2.5 at.% Fe. 

Table S1. Summary of columnar grain size, hardness and modulus of the pure Al and Al-Fe alloys. 

Compositions are all in atomic percentage.  

Table S2. Details of atomistic models shown in Figure S8. 

Movie S1. In situ compression of pure Al. 

Movie S2. In situ compression of Al-2.5at.% Fe. 

Movie S3. In situ compression of Al-5.9at.% Fe. 



Movie S4. 3D MD simulation of 9R recovery in pure nt Al at ambient condition. 

Movie S5. 3D MD simulation of 9R stability in nt Al-5 at.% Fe at ambient condition. 

Movie S6. 3D MD simulation of uniaxial compression of nt Al-5 at.% Fe. 

Movie S7. 2D MD simulation of uniaxial compression of Al-5 at.% Fe. 

 

 

 

 

Density function theory (DFT) calculations 

Validation of Pseudo potentials 

Density function theory calculations were carried out using open source Quantum-

ESPRESSO code.[1] Generalized gradient approximation (GGA) for exchange correlation 

functional with Perdew-Becke-Erzenhof (PBE) parameterization were employed in the 

calculations.[2] Interaction between valence electrons and ionic cores is treated with projector 

augmented wave (PAW) method. The pseudopotential files are obtained from the standard solid 

state pseudopotentials (SSSP) project, which selects and recommends pseudopotentials with 

reasonably good efficiency and accuracy towards basic physical properties including formation 

energy of solid and equation of state.[3] The numbers of valence electrons in the pseudo potentials 

for Al and Fe are 3 (3s2, 3p1) and 16 (3s2, 4s2, 3p6, 3d6), respectively. We use a plane wave energy 

cutoff of 408 and 1225 eV for Al and Fe, respectively, for calculations of lattice constants as well 

as the cohesive energies. 

Such properties, calculated using the pseudopotentials are reported and compared to 

experimental values in Table S2. At ground state, Al has an FCC structure, while Fe has BCC 

structure. The lattice parameter and the cohesive energy of FCC Al was found to be 4.040 Å and 

3.23 eV, in good agreement with experimentally measured values of 4.046 Å and 3.39 eV.[4] The 

properties of BCC Fe were found to be 2.816 Å and 4.71 eV, which agree reasonably well with 



experimental values of 2.855 Å and 4.28 eV.[5] In addition, the results from our calculations fall 

well within the range of other DFT calculations.  

 

Bulk stacking fault energies (SFEs) 

We have examined the bulk SFEs on (111) planes of pure Al, as well as Al with different 

compositions of Fe impurity. For all cases, a total of 8 (111) atomic monolayers in y direction are 

considered. Periodic boundary conditions are applied in all directions. A vacuum of 8 Å is created 

between the top and bottom free surfaces of the crystal. To measure the SFE, the pristine structure 

is first relaxed to obtain the reference energy. The structure is then sheared at the 4th and 5th (111) 

plane to create a SF and subsequently relaxed. The bulk SFE is calculated based on the energy 

difference between the structures. For the case of pure Al (Figure S8a), a total of 32 atoms (4 per 

layer) are modeled. To model the Fe impurity (Figure S8a), an Al atom on one side of the slip 

plane is replaced by an Fe atom. The models in Figure S8a are of different size, hence different 

atomic percentage of Fe on a single (111) monoatomic plane. 

The details of the models are summarized in Table S2.  

The calculated stacking fault energy vs. in-plane atomic percentage of Fe is plotted in 

Figure S8b. For pure Al, the stacking fault energy is 128 mJ/m2, in good agreement with the 

experimental values of 120-144 mJ/m2.[4] This validation proves that 8 monoatomic layers are 

sufficient to reproduce the bulk stacking fault energy. The stacking fault energy increases with 

increasing Fe content. When Fe is at the in-plane atomic percentage of 25%, the stacking fault 

energy is as high as 178 mJ/m2. Also, the increase in stacking fault energy is non-linear, the rate 

of increase also increases with higher Fe content. It is suspected that the interaction between 

neighboring Fe atoms may play an important role in the rapid increase in stacking fault energy. 



Indeed, when the in-plane atomic percentage of Fe is 25%, the Fe atoms are merely separated by 

one layer of Al atoms.  

 

Generalized stacking fault energies (SFEs) of surface atomic clusters 

The SFEs of surface atomic clusters are calculated using surface trimer and septmer (pure 

and impure Al in Figure S8c) configurations. For all surface cluster models, two atomic 

monolayers of {111} Al are used as substrate in the x-z plane. For trimer models, each monolayer 

contains 16 atoms. For septmer models, each monolayer contains 36 atoms. The bottom 

monoatomic layer is fixed. The stable SFEs are first obtained for each model by calculating total 

energies of the models corresponding to perfect FCC and faulted stacking (Figure S8b). Total 

surface relaxation is allowed during the energy minimization. The obtained equilibrium (FCC 

stacking) and metastable structures, i.e. SFs, are then linearly interpolated to produce a chain of 

transient states. Each transient state is relaxed while fixing the motion of all the “mobile” atoms in 

the x-z plane and allowing them to move in the y direction.  

The obtained excess energy per surface atom curves are shown in Figure S8e. The 

horizontal axis is the reaction coordinate, which corresponds to the position of the surface atomic 

cluster from its perfect FCC stacking. Therefore, at Coordinate 6, the cluster is at its metastable 

stacking fault configuration. It is evident from Figure S8 (comparing the black and blue curves) 

that the Trimers have to overcome higher energy barriers (by 0.012 eV on average) when they 

migrate from the perfect FCC configuration to a stacking fault configuration (or vice versa). The 

addition of Fe impurity also significantly increases the energy barrier (by 0.039 eV on average) 

for the surface migration of the clusters.  

 



Nanoindentation methods 

Partial loading & unloading indentation experiments were performed using Hysitron TI950. 

For each experiment, 20 cycles that consist of loading-holding-unloading segments were 

conducted. For a single cycle, 0.5 s, 1 s and 0.5 s was set for loading, holding and unloading, 

respectively. Different maximum loads were applied for different specimens to ensure the 

maximum contact depth is ~ 15% of the total film thickness. At least 10 indentation experiments 

were carried out for each sample and more than one hundred hardness or modulus data in plateau 

regions were collected. 20 indents with contact depth of ~ 150 nm were conducted using 

Fisherscope 2000XYp on each sample to recheck the hardness values.  

 

Stress-strain calculations for deformation volume 

FIB polishing normal to the pillar axial direction caused tapering of the pillars, the taper 

angle of which was measured to be 2.8 ± 0.6˚ on average. To determine the engineering stress-

strain curves from the compressions, the cross section at half height was used as the 

representative area. As such, engineering stress calculated in this study represents a lower bound 

stress experienced by pillars. The influence of elastic deformation of the Si substrate and the 

diamond tip on the measurement of strain was estimated by considering the pressed elastic half-

space derived by Sneddon. The valid displacement in this study is defined as: 

𝑢 =  𝑢𝑚𝑒𝑎 −  
1−𝑣𝑑𝑖𝑎

2

𝐸𝑑𝑖𝑎
(

𝐹

𝑑𝑖𝑡
) −  

1−𝑣𝑆𝑖
2

𝐸𝑆𝑖
(

𝐹

𝑑𝑏
)                                                                          (1) 

where umea, F are the measured displacement and force, respectively. dit, db represent the top and 

bottom diameter of pillars. Edia and dia denote the elastic modulus and Poisson ratio of the 

diamond flat punch, taken to be 1140 GPa and 0.07, respectively. Likewise, The ESi and Si 



denote the elastic modulus and Poisson ratio of the Si (111) substrates, and are 189 GPa and 

0.26, respectively.[6]  

The specific deformation structure indicates that the formula of the homogeneous 

deformation model to convert the true stress, i.e. 𝜎𝑡 =  𝜎𝑒(1 − 𝜀𝑒), is not applicable to the upper 

deformed volume where deformation concentrates. Based on the real-time deformation captured 

from the in situ compression videos, the spontaneous top, middle and bottom diameters of the 

pillars were measured at varying displacements. It is found that the gain of the top circular plane 

diameter is approximately linearly proportional to the ongoing displacement. The spontaneous 

true stress of the deformed volume can be estimated using the formula, 𝜎𝑡 =  
𝐹

𝐴𝑚𝑑𝑣
 =  

4𝐹

𝜋(𝑑𝑚𝑑𝑣)2, 

where Amdv and dmdv are the real-time area and diameter of the middle of the deformed volume, 

respectively, and F is the measured force. To obtain the dmdv, the dt (dt = dmdv) and db should be 

determined first. The dt is defined as 𝑑𝑡 =  𝑑𝑖𝑡 +  𝛼𝑢, were dit is the initial top circular plane 

diameter and α is the dilation parameter and u is displacement. The relations between dt and the 

displacement, u, for Al-2.5, 5.9 at.%Fe pillars are determined to be 𝑑𝑡 =  450 ± 15 + 0.6 ±

0.12 𝑢 and 𝑑𝑡 =  418 ± 11 + 0.93 ± 0.1𝑢, respectively (Figure S5a). Assume the travelling 

speed of the dilation of the bottom surface of the reverse conical frustum, i.e. the deformed 

volume, along the pillar axial direction is constant at a given strain rate. According to the dilation 

synchronized to the ongoing displacement, the speed can be approximately estimated from the 

first observation of the dilation at half height of the pillars. As a result, the varying bottom 

diameter of the deformed volume, dbdv, originating from the tapering angle, can be defined as 

𝑑𝑏𝑑𝑣 = 𝑑𝑖𝑡 +  
(𝑑𝑖𝑚− 𝑑𝑖𝑡)𝑢

𝑢𝑐
, where the initial diameters of the top and the middle of the pillars are 

given by dit and dim, respectively, and u is the total displacement and the uc is the critical 

displacement where the first dilation event is captured at the half height of the pillars. dmdv is 



calculated from 𝑑𝑚𝑑𝑣 =
𝑑𝑡+𝑑𝑏𝑑𝑣

2
. The spontaneous circular plane area of the middle of the 

deformed volume, Amdv, is deduced as: 

𝐴𝑚𝑑𝑣 =  𝜋(
2𝑑𝑖𝑡+𝛼𝑢+ 
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Please note that the onset of plasticity of true stress-strain curves used to predict the 

plasticity of the deformed volume represent the upper bound of the yield strength as a result of 

𝐴𝑚𝑑𝑣 =  
𝜋𝑑𝑖𝑡

2

4
 at zero strain (Figure S5c). The possible punch/pillar misalignment and/or 

compliance with substrate make the precise determination of yield strength challenging and the 

estimated modulus from the elastic loading slope deviates. Strain hardening exponent, n, were 

deduced from the regimes on the true stress-strain curves where the contact had been established 

in a steady flow condition to minimize the initial stiffness error and ensure the stress counted as 

yield point beyond the first yield event. The Holloman equation, 𝜎 = 𝐾𝜀𝑛, with K being the 

hardening coefficient, is used to deduce the strain hardening exponent, n, at 0.2-0.4 to 5 % 

offsets. 

 

 



Figure S1. Microstructural and crystallographic information of Al-xFe (x = 1-10 at.%) 

films: bright-field cross-section and plan-view TEM micrographs and columnar grain size 

distributions of (a) Al-1.6%Fe; (b) Al-2.5%Fe (c) Al-5.9% Fe and (d) Al- 9.9%Fe. (d) XRD 

profiles of as-deposited Al-xFe (x = 1-10 at.%) films. The (111) texture is found improved by 

adding more Fe solutes into Al matrix. 

 

 

Figure S2. XRD pole figure measurements of the Al-xFe (x = 1-10 at.%) films. (111), (200) 

and (220) pole figures and corresponding inverse pole figures of monolithic Al(111) and Al-

2.5%Fe films. Comparisons of (111) pole figures show that monolithic Al has 3-fold symmetry, 

whereas a six-fold symmetry of equally bright {111} poles emerge in Al-2.5%Fe, indicative of a 

large fraction of twin variants in alloyed films. For Al-5.9%Fe and Al-9.9%Fe, the small 

columnar grains, less than 5 nm, undergo slight in-plane as well as out-of-plane rotations based 



on the cross-section TEM analyses. The small local misorientation for nanocolumns leads to an 

accumulative effect and causes the fiber-like texture in (111) pole figure for Al-5.9%Fe and Al-

9.9%Fe specimens, whereas the XTEM analyses unveiled that the nanocolumns remain twin 

relations despite out-of-plane rotation for several degrees. 

 

 

Figure S3. Microstructure of Al-5.9 at.% Fe. (a) The cross-section TEM image of the Al-

5.9%Fe specimen. The average grain size is ~ 4 nm. The SAED as inset shows the film is (111) 

texture and typical twin diffraction pattern. The selected area covered roughly 50 columns, 

suggestive of a high twin fraction. (b) The magnified micrograph and the inserted corresponding 

dark-field TEM images show nanoscale columnar grains. (c) HRTEM image corresponding to 

the selected area from Figure S3b also shows the formation of nanocolumns and boundaries. (d) 

The HRTEM micrograph of several adjacent columns demonstrates the formation of twinned 

patches of 9R phase in the middle domain. When column size falls below ~10 nm, CTBs 



commonly exist, but are decorated with stacking faults. (e) High-density 9R, CTBs and other 

stacking faults are frequently observed in the domains. 

 

 

Figure S4. (a) The Hall-Petch plot for the Al-Fe specimens and the selected ufg and nc 

monolithic Al and Al-xFe alloys processed via different techniques. In comparison to the 

monolithic Al and Al-xFe alloys, the sputtered Al-Fe films have exceptionally high flow stress 

(hardness/2.7). In Figure S4a, ultrafine-grained (ufg) and nanocrystalline (nc) monolithic Al [7] 

and Al-Fe alloys [8] treated by aging or other techniques are cited. Notes: ARB, ECAP, MA, SPS 

and VQ denote accumulative roll bonding, equal channel angular pressing, mechanical alloying, 

spark plasma sintering and vapor quenching, respectively. (b) Hardness vs. solute atom 

concentration of a various sputtered Al alloys with selective solutes. Effect of various solute 

atoms on hardness of Al alloys prepared by magnetron sputtering. Hardness vs. solute atom 

concentration of a various sputtered Al alloys with selective solutes. For a variety of solute-

incorporated Al alloys, the hardness could hardly exceed ~ 3.5 GPa as solute concentration is 

equal to or less than 10 at.%, which highlights the vital role of the Fe solutes in the high-strength 

nt Al-Fe alloys films. 



 

 

Fig.S5. Methodology to estimate the true stress-strain curves of the deformation volume of 

nt Al-xFe alloys. (a) Methodology to estimate the true stress-strain curves of the deformation 

volume of nt Al-xFe alloys. The specific deformation structure indicates that the formula of the 

homogeneous deformation model to convert the true stress, i.e. 𝜎𝑡 =  𝜎𝑒(1 − 𝜀𝑒), is not 

applicable to the upper deformed volume where deformation concentrates. Based on the real-

time deformation captured from the in situ compression videos, the spontaneous top, middle and 

bottom diameters of the pillars were measured at varying displacements. It is found that the gain 

of the top circular plane diameter is approximately linearly proportional to the ongoing 

displacement. The spontaneous true stress of the deformed volume can be estimated using the 

formula, 𝜎𝑡 =  
𝐹

𝐴𝑚𝑑𝑣
 =  

4𝐹

𝜋(𝑑𝑚𝑑𝑣)2, where Amdv and dmdv are the real-time area and diameter of the 

middle of the deformed volume, respectively, and F is the measured force. To obtain the dmdv, 

the dt (dt = dmdv) and db should be determined first. The dt is defined as 𝑑𝑡 =  𝑑𝑖𝑡 +  𝛼𝑢, were dit 



is the initial top circular plane diameter and α is the dilation parameter and u is displacement. 

The relations between dt and the displacement, u, for Al-2.5, 5.9 at.%Fe pillars are determined to 

be 𝑑𝑡 =  450 ± 15 + 0.6 ± 0.12 𝑢 and 𝑑𝑡 =  418 ± 11 + 0.93 ± 0.1𝑢, respectively. (b) 

Representative engineering stress-strain curves. Two types of experiments were performed for 

each specimen, including regular uniaxial loading, and a series of partial loading-unloading 

studies. The partial loading-unloading experiments permit the determination of elastic modulus 

of specimens. The two sets of experiments yield similar stress-strain curves. (c) The true stress-

strain curves of the deformation volume of Al-2.5%Fe and Al-5.9%Fe specimens. On the 

contrary to the conventional softening, the flow stress for the nt Al-xFe alloys can be sustained. 

(d) Strain hardening rate, Θ = 𝑑𝜎
𝑑𝜀⁄ , of pure Al, Al-2.5%Fe and Al-5.9%Fe.    

 

 

Figure S6. Ex situ pillar compression results of monolithic Al and Al-xFe (x = 2.5 and 5.9 

at.%) specimens. SEM micrographs of pillars before and after compressions. A remarkable 

dislocation burst phenomenon were captured on the stress-strain curves of the pure Al. The 



methodology developed in comprehending the in situ compression results was applied to the ex 

situ compression results. The top diameter of the grain is considered linearly proportional to the 

increase in strain and the deformation volume spreading speed in the pillar axial direction at a 

given strain rate at certain Al-Fe composition is assumed to be constant.  

  

 

Figure S7. Fabrication of a 20 µm thick Al-6 at.% Fe coating on Si wafer and in situ 

compressions on 3 µm diameter micropillars of Al-6 at.% Fe specimens. (a) Digital 

micrograph of ~ 20 µm thick Al-6 at.% Fe coating that well adheres to Si wafer with 3 inch in 

diameter. (b) Cross-section SEM micrograph of the 20 µm thick Al-6 at.% Fe coating and (c) 

corresponding EDS patterns of Al, Fe and Si. (d) In situ compression tests were applied on 

micropillars of Al-6 at.% Fe. The stress vs. strain curves are in good agreement with results 

obtains from micropillars with 500 nm diameter presented in main text. These micropillars of 

large diameters show exceptionally high flow stress (> 1.5 GPa) and strain hardening ability. 

 



 

Figure S8. (a) Atomistic structures for calculations of bulk stacking fault energies. In each 

sub-figure, an expanded view is provided to show the atomic percentage of the Fe impurity (in-

plane atomic percentage: 0, 6.3, 12.5 and 25 %) on the slip plane. The red box shows the 

periodic computational cell size in the expanded view. (b) Stacking fault energy of Al as a 

function of in-plane atomic percentage of Fe. (c) Atomistic configurations to calculate the 

stacking fault energies of surface atomic clusters. (d) Schematic representation of the paths 

of the surface trimer and septmer for the calculation of their stacking fault energies. (e) 



Excess energy per surface atom vs. reaction coordinate curves for various types of surface 

atomic clusters for Al-3.1at% Fe. 

 

 

Figure S9. MD simulations: 9R stability in monolithic nt Al and Al-5%Fe at room 

temperature. (a, b) In the MD simulations, the 9R column is set as 10 nm in width. Model 

dimensions are designed as x= 20 nm, z=20 nm, y = 14 nm, and boundaries in three directions 

are periodically repeated. Both cases have the same initial structure. The difference is 5% Al 

atoms are substituted by Fe atoms (atoms are colored according to Common-Neighbor Analysis: 

in pure Al, red-stacking fault; blue-Al matrix atoms; green-grain boundaries and defects; in Al-

5%Fe, red-stacking fault; blue-Fe solutes; brown-GBs and defects; green-Al matrix atoms-

centered cubic structure). After 50 ps, 9R structures recover in Al (see Movie S4). In contrast 9R 

structures in Al-Fe are mostly stable except recovery at few places (see Movie S5). (c) 

Calculated compressive stress vs. strain curves of pure Al and Al-5%Fe. Al-5%Fe exhibits 

high stress and large strain hardening. 

 



 

Figure S10. (a) Super X EDS and STEM of the Al-2.5%Fe (cross-sectional STEM). The 

EDS mapping shows homogeneous distribution of Fe solutes. (b-d) Post-mortem TEM 

micrographs of deformed Al-2.5 at.% Fe. (b) Post-mortem bright-field TEM image of 

deformed Al-2.5 at.% Fe. (c, d) TEM micrograph taken in a region near the pillar top of Al-

2.5%%Fe after compressive strain of ~ 20%, where deformation was initiated. 9R phase shrinks 

to debris of ITBs based on the post-mortem TEM analysis. Narrow boundary is bounded by two 

twinned columns in lieu of broad 9R phase. The narrow boundary is considered 9R debris or 

ITB. The 9R mobility (during deformation) might cause the grain coarsening in regions near the 

pillar top.  

 



Table S1. Summary of columnar grain size, hardness and modulus of the pure Al and Al-Fe 

alloys. Compositions are all in atomic percentage.  

Specimen 

Columnar 

size (nm) 

TEM 

Hardness 

(GPa), 

TI950 

Indentation 

modulus (GPa), 

TI950 

Hardness 

(GPa), 

Fischerscope 

2000XYp 

Pure Al 400 ± 93 0.8 ± 0.03 - 0.8 ± 0.07 

Al-1.1%Fe 110 ± 34 2.5 ± 0.14 107 ± 9 2.8 ± 0.10 

Al-1.6%Fe 85 ± 28 2.8 ± 0.18 107 ± 10 3.1 ± 0.14 

Al-2.5%Fe 41 ± 13 3.5 ± 0.08 115 ± 11 4.0 ± 0.19 

Al-5.9%Fe 4 ± 1 5.5 ± 0.08 115 ± 8 5.6 ± 0.20 

Al-9.9%Fe 2 ± 1 4.7 ± 0.18 115 ± 11 5.0 ± 0.16 

 

Table S2. Details of atomistic models shown in Figure S8. 

Model Figure 

Model size 

(No. of 

atoms) 

Atomic percentage 

(in-plane) 

Atomic 

percentage 

(overall) 

1 8a 32 0% 0% 

2 8b 32 25% 3.10% 

3 8c 64 12.50% 1.60% 

4 8d 128 6.30% 0.80% 
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