501 research outputs found

    Convergent evolution of an ant-plant mutualism across plant families, continents and time

    Get PDF
    Questions: How often has dispersal of seeds by ants evolved in monocots and is the timing of origins associated with changes in the ant community or instead with the rise of forests? Are patterns in the origin of elaiosomes (the trait associated with the dispersal of seeds by ants) through time similar to those for the origins of fleshy fruits? Data studied: We estimate the timing of the origin of elaiosomes and fleshy fruits respectivelyby mapping seed morphology onto a recent phylogeny based on ndhF sequence data forthe monocots (Givnish et al., 2005). For comparison, we use fossil data on ant relativeabundance through time and phylogenetic data for the timing of the origin of seed-dispersing ant lineages. Search method: We mapped origins of both elaiosomes and fleshy fruits onto the phylogenyusing parsimony in the program Mesquite (Maddison and Maddison, 2005). We analysed therelationship between ant relative abundances, the number of origins of seed-dispersing ants, and the rate of origination of elaiosomes using randomization-based Monte Carlo regression in the program R (Cliff and Ord, 1981). Using the program Discrete (Pagel, 2006), we test whether fleshy fruits or elaiosomes and shaded forest understoreys show correlated evolution.Conclusions: Morphological features for the dispersal of seeds by ants (myrmecochory) have evolved at least twenty times within the monocots. Origins of myrmecochory are not associated with the rise of forests during the Cretaceous or with subsequent transitions of plant lineages into closed canopy habitats, nor are they contemporaneous with the origins of fleshy fruits. Instead, the origins of myrmecochory are closely associated with the rise in relative abundanceof ants (proportion of all individual insects in fossils) towards the end of the Eocene and more recently

    Thorn-Like Prickles and Heterophylly in \u3cem\u3eCyanea\u3c/em\u3e: Adaptations to Extinct Avian Browsers on Hawaii?

    Get PDF
    The evolution of thorn-like structures in plants on oceanic islands that lack mammalian and reptilian herbivores is puzzling, as is their tendency toward juvenile-adult leaf dimorphism. We propose that these traits arose in Cyanea (Campanul) on Hawaii as mechanical and visual defenses against herbivory by flightless geese and goose-like ducks that were extirpated by Polynesians within the last 1600 years. A chloroplast DNA phylogeny indicates that thorn-like prickles evolved at least four times and leaf dimorphism at least three times during the last 3.7 million years. The incidence of both traits increases from Oahu eastward toward younger islands, paralleling the distribution of avian species apparently adapted for browsing. The effectiveness of visual defenses against avian browsers (once dominant on many oceanic islands, based on the vagility of their ancestors) may provide a general explanation for insular heterophylly: the other islands on which this previously unexplained phenomenon is marked (New Zealand, New Caledonia, Madagascar, Mascarene Islands) are exactly those on which one or more large flightless avian browsers evolved

    Determinants of maximum tree height in Eucalyptus species along a rainfall gradient in Victoria, Australia

    Get PDF
    We present a conceptual model linking dry-mass allocational allometry, hydraulic limitation, and vertical stratification of environmental conditions to patterns in vertical tree growth and tree height. Maximum tree height should increase with relative moisture supply and both should drive variation in apparent stomatal limitation. Carbon isotope discrimination (δ) should not vary with maximum tree height across a moisture gradient when only hydraulic limitation or allocational allometry limit height, but increase with moisture when both hydraulic limitation and allocational allometry limit maximum tree height. We quantified tree height and D along a gradient in annual precipitation from 300 to 1600 mm from mallee to temperate rain forest in southeastern Australia; Eucalyptus on this gradient span almost the entire range of tree heights found in angiosperms worldwide. Maximum tree height showed a strong, nearly proportional relationship to the ratio of precipitation to pan evaporation. D increased with ln P/Ep, suggesting that both hydraulic limitation and allocational allometry set maximum tree height. Coordinated shifts in several plant traits should result in different species having an advantage in vertical growth rate at different points along a rainfall gradient, and in maximum tree height increasing with relative moisture supply, photosynthetic rate, nutrient supply, and xylem diameter

    Monocot plastid phylogenomics, timeline, net rates of species diversification, the power of multiâ gene analyses, and a functional model for the origin of monocots

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/146610/1/ajb21178-sup-0009-AppendixS9.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146610/2/ajb21178-sup-0020-AppendixS20.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146610/3/ajb21178.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146610/4/ajb21178-sup-0019-AppendixS19.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146610/5/ajb21178-sup-0010-AppendixS10.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146610/6/ajb21178-sup-0002-AppendixS2.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146610/7/ajb21178-sup-0006-AppendixS6.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146610/8/ajb21178-sup-0012-AppendixS12.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146610/9/ajb21178-sup-0017-AppendixS17.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146610/10/ajb21178-sup-0007-AppendixS7.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146610/11/ajb21178-sup-0001-AppendixS1.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146610/12/ajb21178-sup-0003-AppendixS3.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146610/13/ajb21178-sup-0016-AppendixS16.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146610/14/ajb21178_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146610/15/ajb21178-sup-0008-AppendixS8.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146610/16/ajb21178-sup-0004-AppendixS4.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146610/17/ajb21178-sup-0018-AppendixS18.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146610/18/ajb21178-sup-0014-AppendixS14.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146610/19/ajb21178-sup-0011-AppendixS11.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146610/20/ajb21178-sup-0005-AppendixS5.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146610/21/ajb21178-sup-0015-AppendixS15.pd

    Integrating evolution into ecological modelling: accommodating phenotypic changes in agent based models.

    Get PDF
    PMCID: PMC3733718This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Evolutionary change is a characteristic of living organisms and forms one of the ways in which species adapt to changed conditions. However, most ecological models do not incorporate this ubiquitous phenomenon. We have developed a model that takes a 'phenotypic gambit' approach and focuses on changes in the frequency of phenotypes (which differ in timing of breeding and fecundity) within a population, using, as an example, seasonal breeding. Fitness per phenotype calculated as the individual's contribution to population growth on an annual basis coincide with the population dynamics per phenotype. Simplified model variants were explored to examine whether the complexity included in the model is justified. Outputs from the spatially implicit model underestimated the number of individuals across all phenotypes. When no phenotype transitions are included (i.e. offspring always inherit their parent's phenotype) numbers of all individuals are always underestimated. We conclude that by using a phenotypic gambit approach evolutionary dynamics can be incorporated into individual based models, and that all that is required is an understanding of the probability of offspring inheriting the parental phenotype

    Examining the support–supply and bud‐packing hypotheses for the increase in toothed leaf margins in northern deciduous floras

    Get PDF
    Premise The proportion of woody dicots with toothed leaves increases toward colder regions, a relationship used to reconstruct past mean annual temperatures. Recent hypotheses explaining this relationship are that (1) leaves in colder regions are thinner, requiring thick veins for support and water supply, with the resulting craspedodromous venation leading to marginal teeth (support–supply hypothesis) or that (2) teeth are associated with the packing of leaf primordia in winter buds (bud‐packing hypothesis). Methods We addressed these hypotheses by examining leaf thickness, number of primordia in buds, growing season length (mean annual temperature, MAT), and other traits in 151 deciduous woody species using georeferenced occurrences and a Bayesian model controlling for phylogeny. We excluded evergreen species because longer leaf life spans correlate with higher leaf mass per area, precluding the detection of independent effects of leaf thickness on leaf‐margin type. Results The best model predicted toothed leaves with 94% accuracy, with growing season length the strongest predictor. Neither leaf thickness nor number of leaves preformed in buds significantly influenced margin type, rejecting the support–supply and bud‐packing hypotheses. Conclusions A direct selective benefit of leaf teeth via a carbon gain early in the spring as proposed by Royer and Wilf (2006) would match the strong correlation between toothed species occurrence and short growing season found here using Bayesian hierarchical models. Efforts should be directed to physiological work quantifying seasonal photosynthate production in toothed and nontoothed leaves

    Is analysing the nitrogen use at the plant canopy level a matter of choosing the right optimization criterion?

    Get PDF
    Optimization theory in combination with canopy modeling is potentially a powerful tool for evaluating the adaptive significance of photosynthesis-related plant traits. Yet its successful application has been hampered by a lack of agreement on the appropriate optimization criterion. Here we review how models based on different types of optimization criteria have been used to analyze traits—particularly N reallocation and leaf area indices—that determine photosynthetic nitrogen-use efficiency at the canopy level. By far the most commonly used approach is static-plant simple optimization (SSO). Static-plant simple optimization makes two assumptions: (1) plant traits are considered to be optimal when they maximize whole-stand daily photosynthesis, ignoring competitive interactions between individuals; (2) it assumes static plants, ignoring canopy dynamics (production and loss of leaves, and the reallocation and uptake of nitrogen) and the respiration of nonphotosynthetic tissue. Recent studies have addressed either the former problem through the application of evolutionary game theory (EGT) or the latter by applying dynamic-plant simple optimization (DSO), and have made considerable progress in our understanding of plant photosynthetic traits. However, we argue that future model studies should focus on combining these two approaches. We also point out that field observations can fit predictions from two models based on very different optimization criteria. In order to enhance our understanding of the adaptive significance of photosynthesis-related plant traits, there is thus an urgent need for experiments that test underlying optimization criteria and competing hypotheses about underlying mechanisms of optimization

    Multiple ITS Copies Reveal Extensive Hybridization within Rheum (Polygonaceae), a Genus That Has Undergone Rapid Radiation

    Get PDF
    During adaptive radiation events, characters can arise multiple times due to parallel evolution, but transfer of traits through hybridization provides an alternative explanation for the same character appearing in apparently non-sister lineages. The signature of hybridization can be detected in incongruence between phylogenies derived from different markers, or from the presence of two divergent versions of a nuclear marker such as ITS within one individual.In this study, we cloned and sequenced ITS regions for 30 species of the genus Rheum, and compared them with a cpDNA phylogeny. Seven species contained two divergent copies of ITS that resolved in different clades from one another in each case, indicating hybridization events too recent for concerted evolution to have homogenised the ITS sequences. Hybridization was also indicated in at least two further species via incongruence in their position between ITS and cpDNA phylogenies. None of the ITS sequences present in these nine species matched those detected in any other species, which provides tentative evidence against recent introgression as an explanation. Rheum globulosum, previously indicated by cpDNA to represent an independent origin of decumbent habit, is indicated by ITS to be part of clade of decumbent species, which acquired cpDNA of another clade via hybridization. However decumbent and glasshouse morphology are confirmed to have arisen three and two times, respectively.These findings suggested that hybridization among QTP species of Rheum has been extensive, and that a role of hybridization in diversification of Rheum requires investigation

    Do differences in understory light contribute to species distributions along a tropical rainfall gradient?

    Get PDF
    In tropical forests, regional differences in annual rainfall correlate with differences in plant species composition. Although water availability is clearly one factor determining species distribution, other environmental variables that covary with rainfall may contribute to distributions. One such variable is light availability in the understory, which decreases towards wetter forests due to differences in canopy density and phenology. We established common garden experiments in three sites along a rainfall gradient across the Isthmus of Panama in order to measure the differences in understory light availability, and to evaluate their influence on the performance of 24 shade-tolerant species with contrasting distributions. Within sites, the effect of understory light availability on species performance depended strongly on water availability. When water was not limiting, either naturally in the wetter site or through water supplementation in drier sites, seedling performance improved at higher light. In contrast, when water was limiting at the drier sites, seedling performance was reduced at higher light, presumably due to an increase in water stress that affected mostly wet-distribution species. Although wetter forest understories were on average darker, wet-distribution species were not more shade-tolerant than dry-distribution species. Instead, wet-distribution species had higher absolute growth rates and, when water was not limiting, were better able to take advantage of small increases in light than dry-distribution species. Our results suggest that in wet forests the ability to grow fast during temporary increases in light may be a key trait for successful recruitment. The slower growth rates of the dry-distribution species, possibly due to trade-offs associated with greater drought tolerance, may exclude these species from wetter forests
    corecore