85 research outputs found
Insulin administration: present strategies and future directions for a noninvasive (possibly more physiological) delivery
nsulin is a life-saving medication for people with type 1 diabetes, but traditional insulin replacement therapy is based on multiple daily subcutaneous injections or continuous subcutaneous pump-regulated infusion. Nonphysiologic delivery of subcutaneous insulin implies a rapid and sustained increase in systemic insulin levels due to the loss of concentration gradient between portal and systemic circulations. In fact, the liver degrades about half of the endogenous insulin secreted by the pancreas into the venous portal system. The reverse insulin distribution has short- and long-term effects on glucose metabolism. Thus, researchers have explored less-invasive administration routes based on innovative pharmaceutical formulations, which preserve hormone stability and ensure the therapeutic effectiveness. This review examines some of the recent proposals from clinical and material chemistry point of view, giving particular attention to patients' (and diabetologists') ideal requirements that organic chemistry could meet
S-Nitroso-N-acetyl-L-cysteine ethyl ester (SNACET) and N-acetyl-L-cysteine ethyl ester (NACET)–Cysteine-based drug candidates with unique pharmacological profiles for oral use as NO, H2S and GSH suppliers and as antioxidants: Results and overview
S-Nitrosothiols or thionitrites with the general formula RSNO are formally composed of the nitrosyl cation (NO+) and a thiolate (RS−), the base of the corresponding acids RSH. The smallest S-nitrosothiol is HSNO and derives from hydrogen sulfide (HSH, H2S). The most common physiological S-nitrosothiols are derived from the amino acid L-cysteine (CysSH). Thus, the simplest S-nitrosothiol is S-nitroso-L-cysteine (CysSNO). CysSNO is a spontaneous potent donor of nitric oxide (NO) which activates soluble guanylyl cyclase to form cyclic guanosine monophosphate (cGMP). This activation is associated with multiple biological actions that include relaxation of smooth muscle cells and inhibition of platelet aggregation. Like NO, CysSNO is a short-lived species and occurs physiologically at concentrations around 1 nM in human blood. CysSNO can be formed from CysSH and higher oxides of NO including nitrous acid (HONO) and its anhydride (N2O3). The most characteristic feature of RSNO is the S-transnitrosation reaction by which the NO+ group is reversibly transferred to another thiolate. By this way numerous RSNO can be formed such as the low-molecular-mass S-nitroso-N-acetyl-L-cysteine (SNAC) and S-nitroso-glutathione (GSNO), and the high-molecular-mass S-nitrosol-L-cysteine hemoglobin (HbCysSNO) present in erythrocytes and S-nitrosol-L-cysteine albumin (AlbCysSNO) present in plasma at concentrations of the order of 200 nM. All above mentioned RSNO exert NO-related biological activity, but they must be administered intravenously. This important drawback can be overcome by lipophilic charge-free RSNO. Thus, we prepared the ethyl ester of SNAC, the S-nitroso-N-acetyl-L-cysteine ethyl ester (SNACET), from synthetic N-acetyl-L-cysteine ethyl ester (NACET). Both NACET and SNACET have improved pharmacological features over N-acetyl-L-cysteine (NAC) and S-nitroso-N-acetyl-L-cysteine (SNAC), respectively, including higher oral bioavailability. SNACET exerts NO-related activities which can be utilized in the urogenital tract and in the cardiovascular system. NACET, with high oral bioavailability, is a strong antioxidant and abundant precursor of GSH, unlike its free acid N-acetyl-L-cysteine (NAC). Here, we review the chemical and pharmacological properties of SNACET and NACET as well as their analytical chemistry. We also report new results from the ingestion of S-[15N]nitroso-N-acetyl-L-cysteine ethyl ester (S15NACET) demonstrating the favorable pharmacological profile of SNACET
Effects of Nitisinone on Oxidative and Inflammatory Markers in Alkaptonuria: Results from SONIA1 and SONIA2 Studies
Nitisinone (NTBC) was recently approved to treat alkaptonuria (AKU), but there is no information on its impact on oxidative stress and inflammation, which are observed in AKU. Therefore, serum samples collected during the clinical studies SONIA1 (40 AKU patients) and SONIA2 (138 AKU patients) were tested for Serum Amyloid A (SAA), CRP and IL-8 by ELISA; Advanced Oxidation Protein Products (AOPP) by spectrophotometry; and protein carbonyls by Western blot. Our results show that NTBC had no significant effects on the tested markers except for a slight but statistically significant effect for NTBC, but not for the combination of time and NTBC, on SAA levels in SONIA2 patients. Notably, the majority of SONIA2 patients presented with SAA > 10 mg/L, and 30 patients in the control group (43.5%) and 40 patients (58.0%) in the NTBC-treated group showed persistently elevated SAA > 10 mg/L at each visit during SONIA2. Higher serum SAA correlated with lower quality of life and higher morbidity. Despite no quantitative differences in AOPP, the preliminary analysis of protein carbonyls highlighted patterns that deserve further investigation. Overall, our results suggest that NTBC cannot control the sub-clinical inflammation due to increased SAA observed in AKU, which is also a risk factor for developing secondary amyloidosis. © 2022 by the authors
Red blood cells protect albumin from cigarette smoke\u2013induced oxidation
Different studies reported the presence of oxidized (carbonylated) albumin in the extravascular pool, but not in the intravascular one of cigarette smokers. In this study we attempted to explain this apparent discrepancy exposing human serum albumin (HSA) to aqueous cigarette smoke extract (CSE). CSE induces HSA carbonylation and oxidation of the HSA Cys34 sulfhydryl group. An antioxidant action of glutathione, cysteine, and its synthetic derivative N-acetylcysteine was observed only at supra-physiological concentrations, suggesting that physiological (plasma) concentrations of glutathione and cysteine in the low micromolar range are ineffective in preventing cigarette smoke-induced oxidation of HSA. Differently, human erythrocytes resulted to be protective towards CSE-induced oxidation (carbonylation and thiol oxidation) of both HSA and total human plasma proteins
Micro-method for the determination of glutathione in human blood
A new procedure is described for the visible-range spectrophotometric analysis of glutathione (GSH) in microvolumes of blood (as low as 0.5 mu L) collected by fingerstick. Samples are diluted 1 to 300 (v/v) in a stabilizing solution, followed by determination of haemoglobin concentration and by acid deproteination. GSH is then measured in the clear supernatant by colorimetry using DTNB, i.e., 5,5'-dithio-bis(2-nitrobenzoic acid), in aqueous solution at pH 7.8. The DTNB reagent is prepared and kept at pH 6.2 until just prior its addition, thus avoiding spontaneous decomposition of the reagent. The assay is rapid, easy to adapt to large-scale studies and it avoids artefactual oxidation of GSH, a common methodological shortcoming. The method is precise with 1.7 to 3.4% intra-day relative standard deviation (RSD) and 2.2 to 4.2% inter-day RSD, and accurate with -1.4% to 2.3% intra-day relative error (RE) and -2.8% to 1.6% inter-day RE. GSH is recovered by 97.5 to 100% at all tested concentrations. The new colorimetric micro-method was validated by a reliable previously reported HPLC method. The procedure is suitable for minimally invasive investigation of oxidative stress in peripheral blood
Immediate stabilization of human blood for delayed quantification of endogenous thiols and disulfides.
5sinoneEndogenous thiols undergo rapid and reversible oxidation to disulfides when exposed to oxidants and are, therefore, suitable biomarkers of oxidative stress. However, accurate analysis of thiols in blood is frequently compromised by their artifactual oxidation during sample manipulation, which spuriously elevates the disulfide levels. Here, we describe a validated pre-analytical procedure that prevents both artifactual oxidation of thiols during sample manipulation and their oxidative decay for months in biosamples that are stored at -80 degrees C. Addition of N-ethylmaleimide to blood samples from healthy donors was used to stabilize whole blood, red blood cells, platelets and plasma disulfides, whereas addition of citrate buffer followed by dilution of plasma with H2O was used to stabilize plasma thiols. The concentrations of thiols and disulfides were stable in all biosamples for at least 6 months when analyzed by UV/Vis HPLC at regular intervals. Only 3 ml of blood were needed to perform the analyses of thiols and disulfides in the different blood fractions. This pre-analytical procedure is reliable for use in both animal and human prospective studies. Its ease of implementation makes the method suitable for application to multicenter studies where blood samples are collected by different sites and personnel and are shipped to specific specialized laboratories. (C) 2016 Elsevier B.V. All rights reserved.mixedGiustarini, Daniela; Galvagni, Federico; Orlandini, Maurizio; Fanti, Paolo; Rossi, RanieriGiustarini, Daniela; Galvagni, Federico; Orlandini, Maurizio; Fanti, Paolo; Rossi, Ranier
Anethole dithiolethione lowers the homocysteine and raises the glutathone levels in solid tissues and plasma of rats: A novel non-vitamin homocysteine-lowering agent
High homocysteine (Hcys) levels are suspected to contribute to the pathogenesis of cardiovascular disease and of other chronic conditions. Failure of B vitamins to reduce the incidence of cardiovascular events while lowering the Hcys levels, has prompted the search for alternative treatments. We tested the ability of anethole dithiolethione (ADT) to lower the Hcys levels in rats and we explored possible underlying mechanisms. Parenteral administration of 10mg/kg ADT to normal rats for 3 days lowered the Hcys levels between 51.4% and 31.5% in kidneys, liver, testis and plasma. Concomitantly, glutathione (GSH) increased between 112% and 28% in kidneys, brain, liver and plasma whereas protein thiolation index decreased 30%. In hyperhomocysteinemic rats, the plasma Hcys levels dropped 70% following a single ip injection of 10mg/kg ADT, while they decreased 55% following oral administration of 2mg/kg/day ADT for one week. Significant additive effects occurred when sub-therapeutic doses of ADT and folic acid were used in combination. To test the possible mechanism(s) of these actions, we perfused isolated rat livers and kidneys with albumin-bound Hcys, the prevalent form of plasma Hcys, and physiological thiols and disulfides at different ratios. In both organ preparations, the elimination rate of albumin-bound Hcys was progressively faster as the amount of reduced thiols was increased in the perfusate. These findings indicate that ADT shifts the redox ratio of GSH and other thiols with their oxidized forms toward the reduced forms, thus favoring the dissociation of albumin-bound Hcys and its transfer to renal and hepatic cells for further processing
- …