65 research outputs found

    Contribution of cauliflower residues to N nutrition of subsequent lettuce crops grown in rotation in an Italian Alpine environment

    Get PDF
    Up to 75% of nitrogen (N) taken up during cauliflowers production is allocated to leaves, which are left as crop residues after harvest. The inclusion of cauliflower, cultivated alone or intercropped with legumes, in rotation schemes, is a promising tool to optimize N availability to subsequent crops. This original study assessed, for the first time in South Tyrol, Italy, the effect of removal or soil incorporation of cauliflower and clover residues on the growth and N uptake of subsequent lettuce. In 2015, cauliflower was sole-cropped or intercropped with clover, under different N regimes (N0, N1, N2, N3 = 0, 75, 150, 300 kg N ha−1). Cauliflower and clover residues were either removed or incorporated in the soil in 2016. The effects of the residual fertility left by the N fertilizer, the two cropping systems, and the crop residues were assessed on the yield and N uptake of two subsequent lettuce crops. Isotopic 15Nlabeled cauliflower residues were additionally used to quantify the N contribution of cauliflower residues to lettuce growth. During the first lettuce crop, residues incorporation was the only factor increasing lettuce yields (+41%) and N uptake (+58%). The residual effect of N1 and N2 rates increased the lettuce N uptake when clover residues were incorporated. During the second lettuce crop, residues incorporation increased lettuce yields (+26%) and N uptake (+44%). On average, 64% and 35% of the lettuce N amounts, in the first and second cycles, respectively, derived from cauliflower residues, and accounted for 38% of the total N contained in cauliflower residues (214 kg N ha−1). Results from this experiment, uncommon for the examined species, demonstrate that incorporation of cauliflower and clover residues provides an excellent source of N for lettuce. Incorporating residues of the preceding cauliflower crop, alone or intercropped with clover, before establishing the lettuce crop, substantially reduce the N fertilization needs of subsequent lettuce crops

    Supplemental LED Lighting Effectively Enhances the Yield and Quality of Greenhouse Truss Tomato Production: Results of a Meta-Analysis

    Get PDF
    Intensive growing systems used for greenhouse tomato production, together with light interception by cladding materials or other devices, may induce intracanopy mutual shading and create suboptimal environmental conditions for plant growth. There are a large number of published peer-reviewed studies assessing the effects of supplemental light-emitting diode (LED) lighting on improving light distribution in plant canopies, increasing crop yields and producing qualitative traits. However, the research results are often contradictory, as the lighting parameters (e.g., photoperiod, intensity, and quality) and environmental conditions vary among conducted experiments. This research presents a global overview of supplemental LED lighting applications for greenhouse tomato production deepened by a meta-analysis aimed at answering the following research question: does supplemental LED lighting enhance the yield and qualitative traits of greenhouse truss tomato production? The meta-analysis was based on the differences among independent groups by comparing a control value (featuring either background solar light or solar + HPS light) with a treatment value (solar + supplemental LED light or solar + HPS + supplemental LED light, respectively) and included 31 published papers and 100 total observations. The meta-analysis results revealed the statistically significant positive effects (p-value < 0.001) of supplemental LED lighting on enhancing the yield (+40%), soluble solid (+6%) and ascorbic acid (+11%) contents, leaf chlorophyll content (+31%), photosynthetic capacity (+50%), and leaf area (+9%) compared to the control conditions. In contrast, supplemental LED lighting did not show a statistically significant effect on the leaf stomatal conductance (p-value = 0.171). In conclusion, in addition to some partial inconsistencies among the considered studies, the present research enables us to assert that supplemental LED lighting ameliorates the quantitative and qualitative aspects of greenhouse tomato production

    LED lighting for indoor cultivation of basil

    Get PDF
    Indoor cultivation systems are gaining importance worldwide, thanks to their greater efficiency in the use of resources (water, land and nutrients). The limiting factor for these systems is the illumination costs that are still high. In this context, LEDs (light emitting diodes) are gaining attention because of their ability to provide the required light spectra, and high electricity use efficiency. The goal of this study is to identify the role played by red:blue (R:B) ratio on the resource use efficiency of indoor basil cultivation, linking the light physiological response to changes in yield and nutritional properties. Basil plants were cultivated in growth chamber under 5 different R:B ratio LED lighting regimens (respectively, RB0.5, RB1, RB2, RB3, and RB4), using fluorescent lamps as control (CK1). For the six light treatments, a PPFD of 215 mol m-2 s-1 and a photoperiod of 16/8 light/dark per day were provided. Greater biomass production was associated with LEDs lighting as compared with fluorescent lamp, with best performances observed using RB≥2. Adoption of RB2 and RB3 improved also the plant’s capacity to transform resources, resulting in greatest water, land and energy use efficiency. Nutrient use efficiency was increased by using LED lights with a greater portion of blue light in the spectrum. Decreasing R:B ratio also increased leaf stomatal conductance. Plant grown under RB3 showed the best antioxidant properties in terms of flavonoid content and FRAP as compared to the other light treatments. From this study it can be concluded that a R:B ratio of 3 (RB3) provides optimal growing conditions for indoor cultivation of basil

    Winter Greenhouse Tomato Cultivation: Matching Leaf Pruning and Supplementary Lighting for Improved Yield and Precocity

    Get PDF
    Solar radiation entering a high-wire tomato greenhouse is mostly intercepted by the top of the crop canopy, while the role of lower leaves diminishes with age, turning them into sink organs rather than sources. Accordingly, the defoliation of basal leaves is a widely applied agronomic practice in high-wire greenhouse cultivation management. However, the recent increase in the application of supplemental light emitting diode (LED) lighting for high-density tomato production may affect the role of basal leaves, promoting their source role for fruit development and growth. The present research aims to explore the application of supplementary LED lighting on Solanum lycopersicum cv. Siranzo in the Mediterranean area during the cold season in combination with two regimes of basal defoliation. The defoliation factors consisted of the early removal of the leaves (R) right under the developing truss before the fruit turning stage and a non-removal (NR) during the entire cultivation cycle. The lighting factors consisted of an artificial LED lighting treatment with red and blue diodes for 16 h d−1 (h 8-00) with an intensity of 180 µmol s−1 m−2 (RB) and a control cultivated under natural light only (CK). The results demonstrated a great effect of the supplemental LED light, which increased the total yield (+118%), favoring fruit setting (+46%) and faster ripening (+60%) regardless of defoliation regimes, although the increased energy prices hinder the economic viability of the technology. Concerning fruit quality, defoliation significantly reduced the soluble solid content, while it increased the acidity when combined with natural light

    Supplemental LED lighting improves fruit growth and yield of tomato grown under the sub-optimal lighting condition of a building integrated rooftop greenhouse (i-RTG)

    Get PDF
    Unidad de excelencia María de Maeztu CEX2019-000940-MThe metabolism of a building can be connected to a rooftop greenhouse, exchanging energy, water and CO2 flows, therefore reducing emissions and recycling cultivation inputs. However, integrating a rooftop greenhouse onto a building requires the application of stringent safety codes (e.g., fire, seismic codes), to strengthen and secure the structure with safety elements such as thick steel pillars or fireproof covering materials. These elements can shade the vegetation or reduce solar radiation entering the rooftop greenhouse. Nevertheless, application of additional LED light can help to overcome this constraint. The present study evaluated supplemental LED light application in an integrated rooftop greenhouse (i-RTG) at the ICTA-UAB research institute, located in Barcelona (Spain), for tomato cultivation (Solanum lycopersicum cv. Siranzo). The experiment explored the effects of three LED lighting treatments and a control cultivated under natural light only (CK). Applied treatments, added to natural sunlight, were: red and blue (RB), red and blue + far-red (FR) for the whole day, and red and blue + far-red at the end-of-day (EOD), each for 16 h d−1 (8 a.m.-12 a.m.) with an intensity of 170 µmol m−2 s−1. The results indicate that LED light increased the overall yield by 17% compared with CK plants. In particular, CK tomatoes were 9.3% lighter and 7.2% fewer as compared with tomatoes grown under LED treatments. Fruit ripening was also affected, with an increase of 35% red proximal fruit in LED-treated plants. In conclusion, LED light seems to positively affect the development and growth of tomatoes in building integrated agriculture in the Mediterranean area

    Unraveling the Role of Red:Blue LED Lights on Resource Use Efficiency and Nutritional Properties of Indoor Grown Sweet Basil

    Get PDF
    Indoor plant cultivation can result in significantly improved resource use efficiency (surface, water, and nutrients) as compared to traditional growing systems, but illumination costs are still high. LEDs (light emitting diodes) are gaining attention for indoor cultivation because of their ability to provide light of different spectra. In the light spectrum, red and blue regions are often considered the major plants’ energy sources for photosynthetic CO2 assimilation. This study aims at identifying the role played by red:blue (R:B) ratio on the resource use efficiency of indoor basil cultivation, linking the physiological response to light to changes in yield and nutritional properties. Basil plants were cultivated in growth chambers under five LED light regimens characterized by different R:B ratios ranging from 0.5 to 4 (respectively, RB0.5, RB1, RB2, RB3, and RB4), using fluorescent lamps as control (CK1). A photosynthetic photon flux density of 215 μmol m−2 s−1 was provided for 16 h per day. The greatest biomass production was associated with LED lighting as compared with fluorescent lamp. Despite a reduction in both stomatal conductance and PSII quantum efficiency, adoption of RB3 resulted in higher yield and chlorophyll content, leading to improved use efficiency for water and energy. Antioxidant activity followed a spectral-response function, with optimum associated with RB3. A low RB ratio (0.5) reduced the relative content of several volatiles, as compared to CK1 and RB ≥ 2. Moreover, mineral leaf concentration (g g−1 DW) and total content in plant (g plant−1) were influences by light quality, resulting in greater N, P, K, Ca, Mg, and Fe accumulation in plants cultivated with RB3. Contrarily, nutrient use efficiency was increased in RB ≤ 1. From this study it can be concluded that a RB ratio of 3 provides optimal growing conditions for indoor cultivation of basil, fostering improved performances in terms of growth, physiological and metabolic functions, and resources use efficiency

    In Silico Modeling of the Immune System: Cellular and Molecular Scale Approaches

    Get PDF
    The revolutions in biotechnology and information technology have produced clinical data, which complement biological data. These data enable detailed descriptions of various healthy and diseased states and responses to therapies. For the investigation of the physiology and pathology of the immune responses, computer and mathematical models have been used in the last decades, enabling the representation of biological processes. In this modeling effort, a major issue is represented by the communication between models that work at cellular and molecular level, that is, multiscale representation. Here we sketch some attempts to model immune system dynamics at both levels
    • …
    corecore