452 research outputs found

    Anti-CD20 Therapy Acts via FcγRIIIA to Diminish Responsiveness of Human Natural Killer Cells

    Get PDF
    Natural killer (NK) immune cells mediate antibody-dependent cellular cytotoxicity (ADCC) by aggregating FcγRIIIA/CD16, contributing significantly to the therapeutic effect of CD20 monoclonal antibodies (mAb). In this study, we show that CD16 ligation on primary human NK cells by the anti-CD20 mAb rituximab or ofatumumab stably impairs the spontaneous cytotoxic response attributable to cross-tolerance of several unrelated NK-activating receptors (including NKG2D, DNAM-1, NKp46, and 2B4). Similar effects were obtained from NK cells isolated from patients with chronic lymphocytic leukemia in an autologous setting. NK cells rendered hyporesponsive in this manner were deficient in the ability of these cross-tolerized receptors to phosphorylate effector signaling molecules critical for NK cytotoxicity, including SLP-76, PLCγ2, and Vav1. These effects were associated with long-lasting recruitment of the tyrosine phosphatase SHP-1 to the CD16 receptor complex. Notably, pharmacologic inhibition of SHP-1 with sodium stibogluconate counteracted CD20 mAb-induced NK hyporesponsiveness, unveiling an unrecognized role for CD16 as a bifunctional receptor capable of engendering long-lasting NK cell inhibitory signals. Our work defines a novel mechanism of immune exhaustion induced by CD20 mAb in human NK cells, with potentially negative implications in CD20 mAb-treated patients where NK cells are partly responsible for clinical efficacy. Cancer Res; 75(19); 1-12. ©2015 AACR

    Detection rate of FNA cytology in medullary thyroid carcinoma. a meta-analysis

    Get PDF
    Background: The early detection of medullary thyroid carcinoma (MTC) can improve patient prognosis, because histological stage and patient age at diagnosis are highly relevant prognostic factors. As a consequence, delay in the diagnosis and/or incomplete surgical treatment should correlate with a poorer prognosis for patients. Few papers have evaluated the specific capability of fine-needle aspiration cytology (FNAC) to detect MTC, and small series have been reported. This study conducts a meta-analysis of published data on the diagnostic performance of FNAC in MTC to provide more robust estimates. Research Design and Methods: A comprehensive computer literature search of the PubMed/MEDLINE, Embase and Scopus databases was conducted by searching for the terms 'medullary thyroid' AND 'cytology', 'FNA', 'FNAB', 'FNAC', 'fine needle' or 'fine-needle'. The search was updated until 21 March 2014, and no language restrictions were used. Results: Fifteen relevant studies and 641 MTC lesions that had undergone FNAC were included. The detection rate (DR) of FNAC in patients with MTC (diagnosed as 'MTC' or 'suspicious for MTC') on a per lesion-based analysis ranged from 12·5% to 88·2%, with a pooled estimate of 56·4% (95% CI: 52·6-60·1%). The included studies were statistically heterogeneous in their estimates of DR (I-square >50%). Egger's regression intercept for DR pooling was 0·03 (95% CI: -3·1 to 3·2, P = 0·9). The study that reported the largest MTC series had a DR of 45%. Data on immunohistochemistry for calcitonin in diagnosing MTC were inconsistent for the meta-analysis. Conclusions: The presented meta-analysis demonstrates that FNAC is able to detect approximately one-half of MTC lesions. These findings suggest that other techniques may be needed in combination with FNAC to diagnose MTC and avoid false negative results. © 2014 John Wiley & Sons Ltd

    Cystatin C as a nmarker of renal function Immediately after liver transplantation

    Get PDF
    To verify whether cystatin C may be of some use as a renal function marker immediately after orthotopic liver transplantation (OLT), we compared serum cystatin C (S(Cyst)), serum creatinine (S(cr)), and creatinine clearance (C(cr)) levels with the glomerular filtration rate (GFR). On postoperative days 1, 3, 5, and 7, S(Cyst) and S(cr) was measured in simultaneously drawn blood samples, whereas C(cr) was calculated using a complete 24-hour urine collection. The GFR was determined on the same days by means of iohexol plasma clearance (I-GFR). The correlation between 1/S(Cyst) and I-GFR was stronger than that of 1/S(cr) or C(cr) (P< 0.01). In the case of moderate reductions in I-GFR (80-60 mL/minute/1.73 m), S(cr) remained within the normal range, whereas the increase in S(cyst) was beyond its upper limit; for I-GFR reductions to lower levels (59-40 mL/minute/1.73 m), S(cr) increased slightly, whereas S(cyst) was twice its upper normal limit. When we isolated all of the I-GFR values on days 3, 5, and 7 that were > or = 30% lower than that recorded on the first postoperative day, S(Cyst)(P< 0.0001) and S(cr) (P< 0.01) levels were increased, whereas C(cr) remained unchanged (P = 0.09). Receiver operating characteristic (ROC) area-under-the-curve analysis showed that the diagnostic accuracy of S(cyst) was better than that of S(cr) and C(cr). S(cyst) levels of 1.4, 1.7, and 2.2 mg/L respectively predicted I-GFR levels of 80, 60, and 40 mL/minute/1.73 m. In conclusion, cystatin C is a reliable marker of renal function during the immediate post-OLT period, especially when the goal is to identify moderate changes in GFR

    Clinical application of presepsin as diagnostic biomarker of infection: overview and updates

    Get PDF
    The appropriate identification of bacterial infection is the basis for effective treatment and control of infective disease. Among this context, an emerging biomarker of infection is presepsin (PSP), recently described as early marker of different infections. PSP secretion has been shown to be associated with monocyte phagocytosis and plasmatic levels of PSP increase in response to bacterial infection and decrease after antibiotic treatment, therefore it can be considered a marker of activation of immune cell response towards an invading pathogen. Different methods have been developed to measure PSP and this review will briefly describe the different clinical fields of application of PSP, ranging from intensive care to neonatal infection, to orthopedic and pulmonary infection as well as fungal infections and cardiovascular infections

    Non-covalent strategies to functionalize polymeric nanoparticles with NGR peptides for targeting breast cancer

    Get PDF
    Surface functionalization of nanoparticles (NPs) with tumor-targeting peptides is an emerging approach with a huge potential to translate in the clinic and ameliorate the efficacy of nano-oncologicals. One major challenge is to find straightforward strategies for anchoring peptides on the surface of biodegradable NPs and ensuring their correct exposure and orientation to bind the target receptor. Here, we propose a non-covalent strategy to functionalize polyester aminic NPs based on the formation of either electrostatic or lipophilic interactions between NPs and the peptide modified with an anchoring moiety. We selected an iNGRt peptide containing a CendR motif (CRNGR) targeting neuropilin receptor 1 (NRP-1), which is upregulated in several cancers. iNGRt was linked with either a short poly(glutamic acid) chain (polyE) or a palmitoyl chain (Palm) and used to functionalize the surface of NPs made of a diamine poly(ε-caprolactone). iNGRt-PolyE was adsorbed on preformed cationic NPs through electrostatic interaction, whereas iNGRt-Palm was integrated into the forming NPs through interactions. In both cases, peptides were strongly associated with NPs of ∼100 nm, low polydispersity indexes, and positive zeta potential values. NPs entered MDA-MB231 breast cancer cells overexpressing NRP-1 via receptor-mediated endocytosis and showed a different cell localization depending on the mode of peptide anchoring. When loaded with the lipophilic anticancer drug docetaxel (DTX), NPs functionalized with the iNGRt-Palm variant exerted a time- and dose-dependent cytotoxicity similar to DTX in MDA-MB-231 cells but were less toxic than DTX toward control MRC-5 human fibroblasts, not expressing NRP-1. In a heterotopic mouse model of triple negative breast cancer, iNGRt-Palm NPs were tolerated better than free DTX and demonstrated superior anticancer activity and survival compared to both free DTX and NPs without peptide functionalization. We foresee that the functionalization strategy with palmitoylated peptides proposed here can be extended to other biodegradable NPs and peptide sequences designed for therapeutic or targeting purposes

    MWCNT/rGO/natural rubber latex dispersions for innovative, piezo‐resistive and cement‐based composite sensors

    Get PDF
    The present study is focused on the development and characterization of innovative cementitious-based composite sensors. In particular, multifunctional cement mortars with enhanced piezoresistive properties are realized by exploiting the concept of confinement of Multiwall Carbon Nanotubes (MWCNTs) and reduced Graphene Oxide (rGO) in a three-dimensional percolated network through the use of a natural-rubber latex aqueous dispersion. The manufactured cement-based composites were characterized by means of Inelastic Neutron Scattering to assess the hydration reactions and the interactions between natural rubber and the hydrated-cement phases and by Scanning Electron Microscopy and X-Ray diffraction to evaluate the morphological and mineralogical structure, respectively. Piezo-resistive properties to assess electro-mechanical behavior in strain condition are also measured. The results show that the presence of natural rubber latex allows to obtain a three-dimensional rGO/MWCNTs segregate structure which catalyzes the formation of hydrated phases of the cement and increases the piezo-resistive sensitivity of mortar composites, representing a reliable approach in developing innovative mortar-based piezoresistive strain sensors

    Comparative proteomic analysis of human vitreous in rhegmatogenous retinal detachment and diabetic retinopathy reveals a common pathway and potential therapeutic target

    Get PDF
    Background: The vitreous humor serves as a window into the physiological and pathological processes of the eye, particularly the retina. Diabetic retinopathy (DR), a leading cause of blindness, involves hyperglycemia-induced damage to retinal cells, leading to ischemia and elevated nitric oxide levels, culminating in vascular proliferation. Rhegmatogenous retinal detachment (RD) results from a break in the neuroretina, triggering ischemia, photoreceptor death, and cellular proliferation. Proliferative vitreoretinopathy (PVR) further complicates these conditions through fibrous proliferation. Despite their prevalence and potential for blindness, our understanding of the molecular mechanisms underlying these vitreoretinal diseases is incomplete. Methods and results: To elucidate disease mechanisms and identify potential therapeutic targets, we conducted a comparative proteomic analysis of vitreous samples from DR, RD, and macular pucker (P) patients, which were chosen as controls. LC-MS analysis identified 988 quantifiable proteins, with distinct clustering observed among disease groups. Differential expression analysis revealed 202 proteins in RD vs. P and 167 in DR vs. P, highlighting distinct proteomic signatures. Enrichment analysis identified glucose metabolism as an altered process in both diseases, suggesting common pathways despite differing etiologies. Notably, aldo-keto reductase family 1 member B1 (AKR1B1) has emerged as a potential key player in both DR and RD, indicating its role in glucose metabolism and inflammation. In silico drug screening identified diclofenac, an approved ophthalmic non-steroidal anti-inflammatory drug (NSAID), as a potential therapeutic agent targeting AKR1B1. Conclusion: Our study revealed distinct proteomic signatures and common pathways in vitreoretinal diseases, highlighting AKR1B1 as a potential therapeutic target. Using diclofenac during diagnosis and postoperative care for diabetic retinopathy or rhegmatogenous retinal detachment may reduce complications, lower costs, and improve quality of life. Future research will focus on confirming AKR1B1's role in vitreoretinal diseases and understanding diclofenac's mechanism of action

    Synchrotron-generated microbeams induce hippocampal transections in rats

    Get PDF
    Synchrotron-generated microplanar beams (microbeams) provide the most stereo-selective irradiation modality known today. This novel irradiation modality has been shown to control seizures originating from eloquent cortex causing no neurological deficit in experimental animals. To test the hypothesis that application of microbeams in the hippocampus, the most common source of refractory seizures, is safe and does not induce severe side effects, we used microbeams to induce transections to the hippocampus of healthy rats. An array of parallel microbeams carrying an incident dose of 600 Gy was delivered to the rat hippocampus. Immunohistochemistry of phosphorylated gamma-H2AX showed cell death along the microbeam irradiation paths in rats 48 hours after irradiation. No evident behavioral or neurological deficits were observed during the 3-month period of observation. MR imaging showed no signs of radio-induced edema or radionecrosis 3 months after irradiation. Histological analysis showed a very well preserved hippocampal cytoarchitecture and confirmed the presence of clear-cut microscopic transections across the hippocampus. These data support the use of synchrotron-generated microbeams as a novel tool to slice the hippocampus of living rats in a minimally invasive way, providing (i) a novel experimental model to study hippocampal function and (ii) a new treatment tool for patients affected by refractory epilepsy induced by mesial temporal sclerosis
    corecore