199 research outputs found

    The CSR committee as moderator for the ESG score and market value

    Get PDF
    This paper investigates the relationship between the ESG score and market values. Specifically, we test the moderating role of CSR committee defined as organizational subcommittees of boards of directors that make social and environmental recommendationsto the boards of directors and support members in their CSR-related tasks. We built a panel data set with all the listed companies in STOXX Europe 600, covering the period 2014–2020. Firms' data come from Refinitiv Eikon database which contains financial and ESG scores data of all EU listed companies. Our sample of firm-level data contains a dataset of 600 European listed companies which are part of the STOXX Europe 600 Index. We included ESG data of STOXX Europe 600 Index components in the period 2014–2020. Our dataset contains a total of 4800 firm-year observations. We found a negative relationship between ESG score and stock prices while the presence of CSR committee as moderating variable generates no significant evidence of ESG score. The presence of CSR committee is not considerably supporting ESG in achieving higher market performance. The CSR committee plays an essential role in monitoring management activities. This may support management practitioners in better understanding and reacting to stakeholder expectations

    Review of the safety, efficacy and patient acceptability of the combined dienogest/estradiol valerate contraceptive pill

    Get PDF
    The aim of this review is to define the role of the combined dienogest (DNG)/estradiol valerate (E2V) contraceptive pill, in terms of biochemistry, metabolic and pharmacological effects and clinical application as well. E2V is the esterified form of 17β-estradiol (E2), while dienogest is a fourth-generation progestin with a partial antiandrogenic effect. The cycle stability is achieved with 2 to 3 mg DNG, supporting contraceptive efficacy. In this new oral contraceptive, E2V is combined with DNG in a four-phasic dose regimen (the first two tablets contain 3 mg E2V; the next five tablets include 2 mg E2V + 2 mg DNG, followed by 17 tablets with 2 mg E2V + 3 mg DNG; followed by two tablets with 1 mg E2V only, and finally two placebo tablets). Duration and intensity of scheduled withdrawal bleeding are lower with this contraceptive pill, whereas the incidence and the intensity of intra-cyclic bleeding are similar to the other oral contraceptive. With this new pill the levels of high density lipoprotein increased, while the levels of prothrombin fragment 1 + 2 and D-dimer remained relatively unchanged; the levels of sex hormone binding globulin, cortisol binding globulin, thyroxine binding globulin increased. The most frequently reported adverse events are: breast pain, headache, acne, alopecia, migraine, increase of bodyweight. The satisfaction rate is about 79.4%

    Breed and Feeding System Impact the Bioactive Anti-Inflammatory Properties of Bovine Milk

    Get PDF
    In the present study, we aimed at assessing the influence of breed and feeding system on the bovine milk profile of betaines and carnitines and milk capacity in counteracting the inflammatory endothelial cell (EC) damage induced by interleukin (IL)-6. In the first experimental design, two breeds were chosen (Holstein vs. Modicana) to investigate the biomolecule content and antioxidant capacity in milk and dairy products. In the second experimental design, two feeding systems (pasture vs. total mixed ratio) were tested only in Holstein to evaluate the possible effect on the functional profile of milk and dairy products. Finally, the bulk milk from the two experimental designs was used to evaluate the efficacy of preventing IL-6-induced endothelial inflammatory damage. Results showed that Modicana milk and whey had higher biomolecule content and antioxidant activity compared to Holstein milk (p < 0.01). Milk from Holstein fed TMR showed higher concentration of γ-butyrobetaine, δ-valerobetaine (p < 0.01), and l-carnitine (p < 0.05). Similarly, whey from Holstein fed TMR also showed higher content of δ-valerobetaine, glycine betaine, l-carnitine, and acetyl-l-carnitine (p < 0.01) compared to the Holstein fed pasture. Conversely, the antioxidant activity of milk and dairy products was not affected by the feeding system. In ECs, all milk samples reduced the IL-6-induced cytokine release, as well as the accumulation of reactive oxygen species (ROS) and the induction of cell death, with the most robust effect elicited by Modicana milk (p < 0.01). Overall, Modicana milk showed a higher content of biomolecules and antioxidant activity compared to Holstein, suggesting that the breed, more than the feeding system, can positively affect the health-promoting profile of dairy cattle milk

    Activation and mitochondrial translocation of protein kinase Cδ are necessary for insulin stimulation of pyruvate dehydrogenase complex activity in muscle and liver cells

    Get PDF
    In L6 skeletal muscle cells and immortalized hepatocytes, insulin induced a 2-fold increase in the activity of the pyruvate dehydrogenase (PDH) complex. This effect was almost completely blocked by the protein kinase C (PKC) delta inhibitor Rottlerin and by PKCdelta antisense oligonucleotides. At variance, overexpression of wild-type PKCdelta or of an active PKCdelta mutant induced PDH complex activity in both L6 and liver cells. Insulin stimulation of the activity of the PDH complex was accompanied by a 2.5-fold increase in PDH phosphatases 1 and 2 (PDP1/2) activity with no change in the activity of PDH kinase. PKCdelta antisense blocked insulin activation of PDP1/2, the same as with PDH. In insulin-exposed cells, PDP1/2 activation was paralleled by activation and mitochondrial translocation of PKCdelta, as revealed by cell subfractionation and confocal microscopy studies. The mitochondrial translocation of PKCdelta, like its activation, was prevented by Rottlerin. In extracts from insulin-stimulated cells, PKCdelta co-precipitated with PDP1/2. PKCdelta also bound to PDP1/2 in overlay blots, suggesting that direct PKCdelta-PDP interaction may occur in vivo as well. In intact cells, insulin exposure determined PDP1/2 phosphorylation, which was specifically prevented by PKCdelta antisense. PKCdelta also phosphorylated PDP in vitro, followed by PDP1/2 activation. Thus, in muscle and liver cells, insulin causes activation and mitochondrial translocation of PKCdelta, accompanied by PDP phosphorylation and activation. These events are necessary for insulin activation of the PDH complex in these cells

    The Bile Acid Receptor GPBAR-1 (TGR5) Modulates Integrity of Intestinal Barrier and Immune Response to Experimental Colitis

    Get PDF
    BACKGROUND: GP-BAR1, a member G protein coupled receptor superfamily, is a cell surface bile acid-activated receptor highly expressed in the ileum and colon. In monocytes, ligation of GP-BAR1 by secondary bile acids results in a cAMP-dependent attenuation of cytokine generation. AIMS: To investigate the role GP-BAR1 in regulating intestinal homeostasis and inflammation-driven immune dysfunction in rodent models of colitis. METHODS: Colitis was induced in wild type and GP-BAR1(-/-) mice by DSS and TNBS administration. Potential GP-BAR1 agonists were identified by in silico screening and computational docking studies. RESULTS: GP-BAR1(-/-) mice develop an abnormal morphology of colonic mucous cells and an altered molecular architecture of epithelial tight junctions with increased expression and abnormal subcellular distribution of zonulin 1 resulting in increased intestinal permeability and susceptibility to develop severe colitis in response to DSS at early stage of life. By in silico screening and docking studies we identified ciprofloxacin as a GP-BAR1 ligand. In monocytes, ciprofloxacin increases cAMP concentrations and attenuates TNFα release induced by TLR4 ligation in a GP-BAR1 dependent manner. Treating mice rendered colitic by TNBS with ciprofloxacin and oleanolic acid, a well characterized GP-BAR1 ligand, abrogates signs and symptoms of colitis. Colonic expression of GP-BAR1 mRNA increases in rodent models of colitis and tissues from Crohn's disease patients. Flow cytometry analysis demonstrates that ≈90% of CD14+ cells isolated from the lamina propria of TNBS-treated mice stained positively for GP-BAR1. CONCLUSIONS: GP-BAR1 regulates intestinal barrier structure. Its expression increases in rodent models of colitis and Crohn's disease. Ciprofloxacin is a GP-BAR1 ligand

    Plakilactones G and H from a marine sponge. Stereochemical determination of highly flexible systems by quantitative NMR-derived interproton distances combined with quantum mechanical calculations of C-13 chemical shifts

    Get PDF
    In this paper the stereostructural investigation of two new oxygenated polyketides, plakilactones G and H, isolated from the marine sponge Plakinastrella mamillaris collected at Fiji Islands, is reported. The stereostructural studies began on plakilactone H by applying an integrated approach of the NOE-based protocol and quantum mechanical calculations of (13)C chemical shifts. In particular, plakilactone H was used as a template to extend the application of NMR-derived interproton distances to a highly flexible molecular system with simultaneous assignment of four non-contiguous stereocenters. Chemical derivatization and quantum mechanical calculations of (13)C on plakilactone G along with a plausible biogenetic interconversion between plakilactone G and plakilactone H allowed us to determine the absolute configuration in this two new oxygenated polyketides

    A Chemical-Biological Study Reveals C-9-type Iridoids as Novel Heat Shock Protein 90 (Hsp90) Inhibitors

    Get PDF
    The potential of heat shock protein 90 (Hsp90) as a therapeutic target for numerous diseases has made the identification and optimization of novel Hsp90 inhibitors an emerging therapeutic strategy. A surface plasmon resonance (SPR) approach was adopted to screen some iridoids for their Hsp90 alpha binding capability. Twenty-four iridoid derivatives, including 13 new natural compounds, were isolated from the leaves of Tabebuia argentea and petioles of Catalpa bignonioides. Their structures were elucidated by NMR, electrospray ionization mass spectrometry, and chemical methods. By means of a panel of chemical and biological approaches, four iridoids were demonstrated to bind Hsp90 alpha. In particular, the dimeric iridoid argenteoside A was shown to efficiently inhibit the chaperone in biochemical and cellular assays. Our results disclose C-9-type iridoids as a novel class of Hsp90 inhibitors

    Exploring the Anticancer Potential of Premna resinosa (Hochst.) Leaf Surface Extract: Discovering New Diterpenes as Heat Shock Protein 70 (Hsp70) Binding Agents

    Get PDF
    Premna, a genus consisting of approximately 200 species, predominantly thrives in tropical and subtropical areas. Many of these species have been utilized in ethnopharmacology for diverse medicinal applications. In Saudi Arabia, Premna resinosa (Hochst.) Schauer (Lamiaceae) grows wildly, and its slightly viscid leaves are attributed to the production of leaf accession. In this study, we aimed to extract the surface accession from fresh leaves using dichloromethane to evaluate the anticancer potential. The plant exudate yielded two previously unknown labdane diterpenes, Premnaresone A and B, in addition to three already described congeners and four known flavonoids. The isolation process was accomplished using a combination of silica gel column chromatography and semi preparative HPLC, the structures of which were identified by NMR and HRESIMS analyses and a comparison with the literature data of associated compounds. Furthermore, we employed a density functional theory (DFT)/NMR approach to suggest the relative configuration of different compounds. Consequently, we investigated the possibility of developing new chaperone inhibitors by subjecting diterpenes 1–5 to a Surface Plasmon Resonance-screening, based on the knowledge that oridonin, a diterpene, interacts with Heat Shock Protein 70 (Hsp70) 1A in cancer cells. Additionally, we studied the anti-proliferative activity of compounds 1–5 on human Jurkat (human T-cell lymphoma) and HeLa (epithelial carcinoma) cell lines, where diterpene 3 exhibited activity in Jurkat cell lines after 48 h, with an IC50 of 15.21 ± 1.0 µM. Molecular docking and dynamic simulations revealed a robust interaction between compound 3 and Hsp70 key residues

    Natural iminosugar (+)-lentiginosine inhibits ATPase and chaperone activity of Hsp90

    Get PDF
    Heat shock protein 90 (Hsp90) is a significant target in the development of rational cancer therapy due to its role at the crossroads of multiple signaling pathways associated with cell proliferation and cell viability. The relevance of Hsp90 as a therapeutic target for numerous diseases states has prompted the identification and optimization of novel Hsp90 inhibitors as an emerging therapeutic strategy. We performed a screening aimed to identify novel Hsp90 inhibitors among several natural compounds and we focused on the iminosugar (+)-lentiginosine, a natural amyloglucosidases inhibitor, for its peculiar bioactivity profile. Characterization of Hsp90 inhibition was performed using a panel of chemical and biological approaches, including limited proteolysis, biochemical and cellular assays. Our result suggested that the middle domain of Hsp90, as opposed to its ATP-binding pocket, is a promising binding site for new classes of Hsp90 inhibitors with multitarget anti-cancer potentia

    Overcome Chemoresistance: Biophysical and Structural Analysis of Synthetic FHIT-Derived Peptides

    Get PDF
    The fragile histidine triad (FHIT) protein is a member of the large and ubiquitous histidine triad (HIT) family of proteins. On the basis of genetic evidence, it has been postulated that the FHIT protein may function as tumor suppressor, implying a role for the FHIT protein in carcinogenesis. Recently, Gaudio et al. reported that FHIT binds and delocalizes annexin A4 (ANXA4) from plasma membrane to cytosol in paclitaxel-resistant lung cancer cells, thus restoring their chemosensitivity to the drug. They also identified the smallest protein sequence of the FHIT still interacting with ANXA4, ranging fromposition 7 to 13: QHLIKPS. This short sequence of FHIT protein was not only able to bind ANXA4 but also to hold its target in the cytosol during paclitaxel treatment, thus avoiding ANXA4 translocation to the inner side of the cell membrane. Starting from these results, to obtain much information about structure requirements involved in the interaction of the peptide mentioned above, we synthetized a panel of seven peptides through an Ala-scan approach. In detail, to study the binding of FHIT derived peptides with ANXA4, we applied a combination of different biophysical techniques such as differential scanning fluorimetry (DSF), surface plasmon resonance (SPR), and microscale thermophoresis (MST). Circular dichroism (CD) and nuclear magnetic resonance (NMR) were used to determine the conformational structure of the lead peptide (7–13) and peptides generated from ala-scan technique. The application of different biophysical and structural techniques, integrated by a preliminary biological evaluation, allowed us to build a solid structure activity relationship on the synthesized peptides
    corecore