414 research outputs found

    Black hole mergers: do gas discs lead to spin alignment?

    Full text link
    In this Letter we revisit arguments suggesting that the Bardeen-Petterson effect can coalign the spins of a central supermassive black hole binary accreting from a circumbinary (or circumnuclear) gas disc. We improve on previous estimates by adding the dependence on system parameters, and noting that the nonlinear nature of warp propagation in a thin viscous disc affects alignment. This reduces the disc's ability to communicate the warp, and can severely reduce the effectiveness of disc-assisted spin alignment. We test our predictions with a Monte Carlo realization of random misalignments and accretion rates and we find that the outcome depends strongly on the spin magnitude. We estimate a generous upper limit to the probability of alignment by making assumptions which favour it throughout. Even with these assumptions, about 40% of black holes with a0.5a \gtrsim 0.5 do not have time to align with the disc. If the residual misalignment is not small and it is maintained down to the final coalescence phase this can give a powerful recoil velocity to the merged hole. Highly spinning black holes are thus more likely of being subject to strong recoils, the occurrence of which is currently debated.Comment: 6 pages, 2 figures, accepted in MNRA

    Wave-like warp propagation in circumbinary discs II. Application to KH 15D

    Full text link
    KH 15D is a protostellar binary system that shows a peculiar light curve. In order to model it, a narrow circumbinary precessing disc has been invoked, but a proper dynamical model has never been developed. In this paper, we analytically address the issue of whether such a disc can rigidly precess around KH 15D, and we relate the precessional period to the main parameters of the system. Then, we simulate the disc's dynamics by using a 1D model developed in a companion paper, such that the warp propagates into the disc as a bending wave, which is expected to be the case for protostellar discs. The validity of such an approach has been confirmed by comparing its results with full 3D SPH simulations on extended discs. In the present case, we use this 1D code to model the propagation of the warp in a narrow disc. If the inner truncation radius of the disc is set by the binary tidal torques at {\sim} 1 AU, we find that the disc should extend out to 6-10 AU (depending on the models), and is therefore wider than previously suggested. Our simulations show that such a disc does reach an almost steady state, and then precesses as a rigid body. The disc displays a very small warp, with a tilt inclination that increases with radius in order to keep the disc in equilibrium against the binary torque. However, for such wider discs, the presence of viscosity leads to a secular decay of the tilt on a timescale of {\approx} 3000 ({\alpha}/0.05)^(-1) years, where {\alpha} is the disc viscosity parameter. The presence of a third body (such as a planet), orbiting at roughly 10 AU might simultaneously explain the outer truncation of the disc and the maintenance of the tilt for a prolonged time.Comment: 8 pages, 3 figures, accepted for publication in MNRA

    The potential for Earth-mass planet formation around brown dwarfs

    Full text link
    Recent observations point to the presence of structured dust grains in the discs surrounding young brown dwarfs, thus implying that the first stages of planet formation take place also in the sub-stellar regime. Here, we investigate the potential for planet formation around brown dwarfs and very low mass stars according to the sequential core accretion model of planet formation. We find that, for a brown dwarfs of mass 0.05M_{\odot}, our models predict a maximum planetary mass of ~5M_{\oplus}, orbiting with semi-major axis ~1AU. However, we note that the predictions for the mass - semi-major axis distribution are strongly dependent upon the models chosen for the disc surface density profiles and the assumed distribution of disc masses. In particular, if brown dwarf disc masses are of the order of a few Jupiter masses, Earth-mass planets might be relatively frequent, while if typical disc masses are only a fraction of Jupiter mass, we predict that planet formation would be extremely rare in the sub-stellar regime. As the observational constraints on disc profiles, mass dependencies and their distributions are poor in the brown dwarf regime, we advise caution in validating theoretical models only on stars similar to the Sun and emphasise the need for observational data on planetary systems around a wide range of stellar masses. We also find that, unlike the situation around solar-like stars, Type-II migration is totally absent from the planet formation process around brown dwarfs, suggesting that any future observations of planets around brown dwarfs would provide a direct measure of the role of other types of migration.Comment: 11 pages, accepted for publication in MNRA

    Signatures of broken protoplanetary discs in scattered light and in sub-millimetre observations

    Get PDF
    Spatially resolved observations of protoplanetary discs are revealing that their inner regions can be warped or broken from the outer disc. A few mechanisms are known to lead to such 3D structures; among them, the interaction with a stellar companion. We perform a 3D SPH simulation of a circumbinary disc misaligned by 6060^\circ with respect to the binary orbital plane. The inner disc breaks from the outer regions, precessing as a rigid body, and leading to a complex evolution. As the inner disc precesses, the misalignment angle between the inner and outer discs varies by more than 100100^\circ. Different snapshots of the evolution are post-processed with a radiative transfer code, in order to produce observational diagnostics of the process. Even though the simulation was produced for the specific case of a circumbinary disc, most of the observational predictions hold for any disc hosting a precessing inner rim. Synthetic scattered light observations show strong azimuthal asymmetries, where the pattern depends strongly on the misalignment angle between inner and outer disc. The asymmetric illumination of the outer disc leads to azimuthal variations of the temperature structure, in particular in the upper layers, where the cooling time is short. These variations are reflected in asymmetric surface brightness maps of optically thick lines, as CO JJ=3-2. The kinematical information obtained from the gas lines is unique in determining the disc structure. The combination of scattered light images and (sub-)mm lines can distinguish between radial inflow and misaligned inner disc scenarios.Comment: 17 pages, 17 figures. Accepted for publication in MNRA

    The effects of opacity on gravitational stability in protoplanetary discs

    Full text link
    In this paper we consider the effects of opacity regimes on the stability of self-gravitating protoplanetary discs to fragmentation into bound objects. Using a self-consistent 1-D viscous disc model, we show that the ratio of local cooling to dynamical timescales Omega*tcool has a strong dependence on the local temperature. We investigate the effects of temperature-dependent cooling functions on the disc's gravitational stability through controlled numerical experiments using an SPH code. We find that such cooling functions raise the susceptibility of discs to fragmentation through the influence of temperature perturbations - the average value of Omega*tcool has to increase to prevent local variability leading to collapse. We find the effects of temperature dependence to be most significant in the "opacity gap" associated with dust sublimation, where the average value of Omega*tcool at fragmentation is increased by over an order of magnitude. We then use this result to predict where protoplanetary discs will fragment into bound objects, in terms of radius and accretion rate. We find that without temperature dependence, for radii < ~10AU a very large accretion rate ~10^-3 Msun/yr is required for fragmentation, but that this is reduced to 10^-4 Msun/yr with temperature-dependent cooling. We also find that the stability of discs with accretion rates < ~10^-7 Msun/yr at radii > ~50AU is enhanced by a lower background temperature if the disc becomes optically thin.Comment: 12 pages, 10 figures, 4 tables. Accepted by MNRA

    Probing the presence of planets in transition discs' cavities via warps: the case of TW Hya

    Get PDF
    We are entering the era in which observations of protoplanetary discs properties can indirectly probe the presence of massive planets or low mass stellar companions interacting with the disc. In particular, the detection of warped discs can provide important clues to the properties of the star-disc system. In this paper we show how observations of warped discs can be used to infer the dynamical properties of the systems. We concentrate on circumbinary discs, where the mass of the secondary can be planetary. First, we provide some simple relations that link the amplitude of the warp in the linear regime to the parameters of the system. Secondly, we apply our method to the case of TW Hya, a transition disc for which a warp has been proposed based on spectroscopic observations. Assuming values for the disc and stellar parameters from observations, we conclude that, in order for a warp induced by a planetary companion to be detectable, the planet mass should be large (Mp1014MJM_{\rm p} \approx 10 - 14M_{\rm J}) and the disc should be viscous (α0.150.25\alpha \approx 0.15 - 0.25). We also apply our model to LkCa 15 and T Cha, where a substellar companion has been detected within the central cavity of the transition discs.Comment: 12 pages, 4 figures, 2 tables. Accepted for publication in MNRA

    The Role of Gravitational Instabilities in the Feeding of Supermassive Black Holes

    Get PDF
    I review the recent progresses that have been obtained, especially through the use of high-resolution numerical simulations, on the dynamics of self-gravitating accretion discs. A coherent picture is emerging, where the disc dynamics is controlled by a small number of parameters that determine whether the disc is stable or unstable, whether the instability saturates in a self-regulated state or runs away into fragmentation, and whether the dynamics is local or global. I then apply these concepts to the case of AGN discs, discussing the implications of such evolution on the feeding of supermassive black holes. Nonfragmenting, self-gravitating discs appear to play a fundamental role in the process of formation of massive black hole seeds at high redshift ( 10–15) through direct gas collapse. On the other hand, the different cooling properties of the interstellar gas at low redshifts determine a radically different behaviour for the outskirts of the accretion discs feeding typical AGNs. Here the situation is much less clear from a theoretical point of view, and while several observational clues point to the important role of massive discs at a distance of roughly a parsec from their central black hole, their dynamics is still under debate

    Probing the rotation curve of the outer accretion disk in FU Orionis objects with long-wavelength spectroscopy

    Get PDF
    Studies of the Spectral Energy Distribution of Young Stellar Objects suggest that the outer disk of FU Orionis objects might be self-gravitating. In this paper we propose a method to test directly whether, in these objects, significant deviations from Keplerian rotation occur. In a first approach, we have used a simplified model of the disk vertical structure that allows us to quickly bring out effects related to the disk self-gravity. We find that the often studied optical and near-infrared line profiles are produced too close to the central object to provide significant evidence for non-Keplerian rotation. Based on parameters relevant for the case of FU Ori, we show that high-resolution long-wavelength spectroscopy, of the far-infrared H2_2 pure rotational lines (sometimes observed in ``passive'' protostellar disks) and sub-mm CO lines, should be well suited to probe the rotation curve in the outer disk, thus measuring to what extent it is affected by the disk self-gravity. The results of the present exploratory paper should be extended soon to a more realistic treatment of the disk vertical structure.Comment: 14 pages, A&A in pres

    Wave-like warp propagation in circumbinary discs I. Analytic theory and numerical simulations

    Full text link
    In this paper we analyse the propagation of warps in protostellar circumbinary discs. We use these systems as a test environment in which to study warp propagation in the bending-wave regime, with the addition of an external torque due to the binary gravitational potential. In particular, we want to test the linear regime, for which an analytic theory has been developed. In order to do so, we first compute analytically the steady state shape of an inviscid disc subject to the binary torques. The steady state tilt is a monotonically increasing function of radius. In the absence of viscosity, the disc does not present any twist. Then, we compare the time-dependent evolution of the warped disc calculated via the known linearised equations both with the analytic solutions and with full 3D numerical simulations, which have been performed with the PHANTOM SPH code using 2 million particles. We find a good agreement both in the tilt and in the phase evolution for small inclinations, even at very low viscosities. Moreover, we have verified that the linearised equations are able to reproduce the diffusive behaviour when {\alpha} > H/R, where {\alpha} is the disc viscosity parameter. Finally, we have used the 3D simulations to explore the non-linear regime. We observe a strongly non-linear behaviour, which leads to the breaking of the disc. Then, the inner disc starts precessing with its own precessional frequency. This behaviour has already been observed with numerical simulations in accretion discs around spinning black holes. The evolution of circumstellar accretion discs strongly depends on the warp evolution. Therefore the issue explored in this paper could be of fundamental importance in order to understand the evolution of accretion discs in crowded environments, when the gravitational interaction with other stars is highly likely, and in multiple systems.Comment: 15 pages, 17 figures, accepted for publication in MNRA
    corecore