32 research outputs found

    Guerra e civiltà. Anno Accademico 1880-81

    Get PDF

    Kinetic of the Sewage Treatment: The Consumption of Organic Carbon of The Microalga Chlorella sp

    Get PDF
    As well known, microalgae are eukaryotic or procaryotic microorganisms able to photosynthesize, namely transforming inorganic substrates and sun light into organic compounds and chemical energy. They result very promising in treating civil wastewaters thanks to their ability to employ nitrates and phosphates as nutrients (Lima et al., 2019). Autotrophic microalgae are, anyway, not useful in decreasing the organic carbon content of wastewaters, and for this reason, they cooperate with heterotrophic bacteria. The usefulness of microalgaebacteria consortia in treating wastewaters and the ratio of their inoculum was investigated in a previous work (Lima, 2022a). Contrarily to autotrophic microalgae, mixotrophic microalgae are able to decrease the organic content of the matrix in which they are grown. In this work, we preliminarily investigated the capability of the autochthonous microalga Chlorella sp. CW2 to grow in mixotrophy and decrease the organic content of the artificial wastewater in which they are grown. Several batch cultivations were performed with glucose in different concentrations. Kinetic parameters were obtained and employed to determine the dilution rate (D) ideal for the abatement of glucose from the artificial wastewater

    Kinetic of the Sewage Treatment: The Consumption of Organic Carbon of The Microalga Chlorella sp.

    Get PDF
    As well known, microalgae are eukaryotic or procaryotic microorganisms able to photosynthesize, namely transforming inorganic substrates and sun light into organic compounds and chemical energy. They result very promising in treating civil wastewaters thanks to their ability to employ nitrates and phosphates as nutrients (Lima et al., 2019). Autotrophic microalgae are, anyway, not useful in decreasing the organic carbon content of wastewaters, and for this reason, they cooperate with heterotrophic bacteria. The usefulness of microalgae-bacteria consortia in treating wastewaters and the ratio of their inoculum was investigated in a previous work (Lima, 2022a). Contrarily to autotrophic microalgae, mixotrophic microalgae are able to decrease the organic content of the matrix in which they are grown. In this work, we preliminarily investigated the capability of the autochthonous microalga Chlorella sp. CW2 to grow in mixotrophy and decrease the organic content of the artificial wastewater in which they are grown. Several batch cultivations were performed with glucose in different concentrations. Kinetic parameters were obtained and employed to determine the dilution rate (D) ideal for the abatement of glucose from the artificial wastewater

    Discovering Conformational Sub-States Relevant to Protein Function

    Get PDF
    Background: Internal motions enable proteins to explore a range of conformations, even in the vicinity of native state. The role of conformational fluctuations in the designated function of a protein is widely debated. Emerging evidence suggests that sub-groups within the range of conformations (or sub-states) contain properties that may be functionally relevant. However, low populations in these sub-states and the transient nature of conformational transitions between these substates present significant challenges for their identification and characterization. Methods and Findings: To overcome these challenges we have developed a new computational technique, quasianharmonic analysis (QAA). QAA utilizes higher-order statistics of protein motions to identify sub-states in the conformational landscape. Further, the focus on anharmonicity allows identification of conformational fluctuations that enable transitions between sub-states. QAA applied to equilibrium simulations of human ubiquitin and T4 lysozyme reveals functionally relevant sub-states and protein motions involved in molecular recognition. In combination with a reaction pathway sampling method, QAA characterizes conformational sub-states associated with cis/trans peptidyl-prolyl isomerization catalyzed by the enzyme cyclophilin A. In these three proteins, QAA allows identification of conformational sub-states, with critical structural and dynamical features relevant to protein function. Conclusions: Overall, QAA provides a novel framework to intuitively understand the biophysical basis of conformational diversity and its relevance to protein function. © 2011 Ramanathan et al

    The development and validation of a scoring tool to predict the operative duration of elective laparoscopic cholecystectomy

    Get PDF
    Background: The ability to accurately predict operative duration has the potential to optimise theatre efficiency and utilisation, thus reducing costs and increasing staff and patient satisfaction. With laparoscopic cholecystectomy being one of the most commonly performed procedures worldwide, a tool to predict operative duration could be extremely beneficial to healthcare organisations. Methods: Data collected from the CholeS study on patients undergoing cholecystectomy in UK and Irish hospitals between 04/2014 and 05/2014 were used to study operative duration. A multivariable binary logistic regression model was produced in order to identify significant independent predictors of long (> 90 min) operations. The resulting model was converted to a risk score, which was subsequently validated on second cohort of patients using ROC curves. Results: After exclusions, data were available for 7227 patients in the derivation (CholeS) cohort. The median operative duration was 60 min (interquartile range 45–85), with 17.7% of operations lasting longer than 90 min. Ten factors were found to be significant independent predictors of operative durations > 90 min, including ASA, age, previous surgical admissions, BMI, gallbladder wall thickness and CBD diameter. A risk score was then produced from these factors, and applied to a cohort of 2405 patients from a tertiary centre for external validation. This returned an area under the ROC curve of 0.708 (SE = 0.013, p  90 min increasing more than eightfold from 5.1 to 41.8% in the extremes of the score. Conclusion: The scoring tool produced in this study was found to be significantly predictive of long operative durations on validation in an external cohort. As such, the tool may have the potential to enable organisations to better organise theatre lists and deliver greater efficiencies in care

    Sull'equilibrio politico degli Stati. Anno Accademico 1867-68

    Get PDF

    Synthesis of In-Line Filters With Arbitrarily Placed Attenuation Poles by Using Non-Resonating Nodes

    No full text
    A general and direct synthesis technique of pseudoelliptic inline filters with arbitrarily placed attenuation poles (APs) (transmission zeros) at real frequencies is presented. The APs are brought about and independently controlled by dedicated resonators, which are coupled to nonresonating nodes. Simple rules to properly determine the phases of the reflection coefficients at the input and output are given. To reduce the effect of roundoff errors, especially for higher order filters, the extraction of the elements of the network is performed from the input and output simultaneously. Multiplicity and scaling properties of the solutions are discussed. Synthesis examples are presented to demonstrate the soundness of the procedure. Theoretical results are compared with measurement to demonstrate the validity of the presented theory
    corecore