21 research outputs found

    Sex-specific associations between co-exposure to multiple metals and externalizing symptoms in adolescence and young adulthood

    Get PDF
    : Externalizing disorders, such as attention-deficit/hyperactivity disorder (ADHD), account for the majority of the child/adolescent referrals to mental health services and increase risk for later-life psychopathology. Although the expression of externalizing disorders is more common among males, few studies have addressed how sex modifies associations between metal exposure and adolescent externalizing symptoms. This study aimed to examine sex-specific associations between co-exposure to multiple metals and externalizing symptoms in adolescence and young adulthood. Among 150 adolescents and young adults (55% female, ages: 15-25 years) enrolled in the Public Health Impact of Metals Exposure (PHIME) study in Brescia, Italy, we measured five metals (manganese (Mn), lead (Pb), copper (Cu), chromium (Cr), nickel (Ni)) in four biological matrices (blood, urine, hair, and saliva). Externalizing symptoms were assessed using the Achenbach System of Empirically Based Assessment (ASEBA) Youth Self-Report (YSR) or Adult Self Report (ASR). Using generalized weighted quantile sum (WQS) regression, we investigated the moderating effect of sex (i.e., assigned at birth) on associations between the joint effect of exposure to the metal mixture and externalizing symptoms, adjusting for age and socioeconomic status. We observed that metal mixture exposure was differentially associated with aggressive behavior in males compared to females (β = -0.058, 95% CI [-0.126, -0.009]). In males, exposure was significantly associated with more externalizing problems, and aggressive and intrusive behaviors, driven by Pb, Cu and Cr. In females, exposure was not significantly associated with any externalizing symptoms. These findings suggest that the effect of metal exposure on externalizing symptoms differs in magnitude between the sexes, with males being more vulnerable to increased externalizing symptoms following metal exposure. Furthermore, our findings support the hypothesis that sex-specific vulnerabilities to mixed metal exposure during adolescence/young adulthood may play a role in sex disparities observed in mental health disorders, particularly those characterized by externalizing symptoms

    Impact of COVID-19-Related Social Isolation on Behavioral Outcomes in Young Adults Residing in Northern Italy

    Get PDF
    : Social isolation affects our emotions, behavior and interactions. Worldwide, individuals experienced prolonged periods of isolation during the first wave of the COVID-19 pandemic when authorities-imposed restrictions to reduce the spread of the virus. In this study, we investigated the effects of social isolation on emotional and behavioral outcomes in young adults from Lombardy, Italy, a global hotspot of COVID-19. We leveraged baseline (pre-social isolation) and follow-up (mid- or post-isolation) data collected from young adults enrolled in the ongoing, longitudinal Public Health Impact of Metals Exposure (PHIME) study. At baseline, 167 participants completed the ASEBA questionnaires (ASR/YSR) by web link or in person; 65 completed the ASR 12-18 weeks after the onset of restrictions. Using the sign test and multiple linear regression models, we examined differences in ASR scores between baseline and follow-up adjusting for sex, age, pre-pandemic IQ and time with social restrictions (weeks). Further, we examined interactions between sex and time in social isolation. Participants completed the ASR after spending an average of 14 weeks in social isolation (range 12-18 weeks). Thought problems increased between baseline and follow-up (median difference 1.0; 1st, 3rd quartile: -1.0, 4.0; p = 0.049). Among males, a longer time in social isolation (≥14 weeks) was associated with increased rule-breaking behaviors of 2.8 points. These results suggest the social isolation related to COVID-19 adversely impacted mental health. In particular, males seem to externalize their condition. These findings might help future interventions and treatment to minimize the consequences of social isolation experience in young adults

    The effects of the exposure to neurotoxic elements on Italian schoolchildren behavior

    Get PDF
    Neurodevelopmental disorders are constantly increasing on a global scale. Some elements like heavy metals are known to be neurotoxic. In this cross-sectional study we assessed the neurobehavioral effect of the exposure to trace elements including lead, mercury, cadmium, manganese, arsenic and selenium and their interactions among 299 schoolchildren residing in the heavily polluted Taranto area in Italy. Whole blood, urine and hair were collected for metal analyses, while the Child Behavior Checklist and the Social Responsiveness Scale, administered to the main teacher and the mothers were considered to identify behavioral problems in children. Blood lead mainly influenced social problems, aggressive behavior, externalizing and total problems. Urinary arsenic showed an impact on anxiety and depression, somatic problems, attention problems and rule breaking behavior. A significant interaction between lead and arsenic was observed, with a synergistic effect of the two metals increasing the risk of attention problems, aggressive behavior, externalizing problems and total problems. Overall, we were able to test that higher blood lead, urinary arsenic concentrations and their interaction increase the risk of neurobehavioral problems. This is in line with the U.S. Environmental Protection Agency’s priority list of hazardous substances where arsenic and lead are ranked as first and second respectively

    Topological network properties of resting-state functional connectivity patterns are associated with metal mixture exposure in adolescents

    Get PDF
    IntroductionAdolescent exposure to neurotoxic metals adversely impacts cognitive, motor, and behavioral development. Few studies have addressed the underlying brain mechanisms of these metal-associated developmental outcomes. Furthermore, metal exposure occurs as a mixture, yet previous studies most often consider impacts of each metal individually. In this cross-sectional study, we investigated the relationship between exposure to neurotoxic metals and topological brain metrics in adolescents. MethodsIn 193 participants (53% females, ages: 15-25 years) enrolled in the Public Health Impact of Metals Exposure (PHIME) study, we measured concentrations of four metals (manganese, lead, copper, and chromium) in multiple biological media (blood, urine, hair, and saliva) and acquired resting-state functional magnetic resonance imaging scans. Using graph theory metrics, we computed global and local efficiency (global:GE; local:LE) in 111 brain areas (Harvard Oxford Atlas). We used weighted quantile sum (WQS) regression models to examine association between metal mixtures and each graph metric (GE or LE), adjusted for sex and age. ResultsWe observed significant negative associations between the metal mixture and GE and LE [beta GE = -0.076, 95% CI (-0.122, -0.031); beta LE= -0.051, 95% CI (-0.095, -0.006)]. Lead and chromium measured in blood contributed most to this association for GE, while chromium measured in hair contributed the most for LE. DiscussionOur results suggest that exposure to this metal mixture during adolescence reduces the efficiency of integrating information in brain networks at both local and global levels, informing potential neural mechanisms underlying the developmental toxicity of metals. Results further suggest these associations are due to combined joint effects to different metals, rather than to a single metal

    Manganese and Developmental Neurotoxicity

    No full text
    Manganese (Mn) is an essential metal that plays a fundamental role for brain development and functioning. Environmental exposure to Mn may lead to accumulation in the basal ganglia and development of Parkinson-like disorders. The most recent research is focusing on early-life overexposure to Mn and the potential vulnerability of younger individuals to Mn toxicity also in regard to cognitive and executive functions through the involvement of the frontal cortex.Neurodevelopmental disturbances are increasing in the society, and understanding the potential role of environmental determinants is a key for prevention. Therefore, assessing the environmental sources of Mn exposure and the mechanisms of developmental neurotoxicity and defining appropriate biomarkers of exposure and early functional alterations represent key issues to improve and address preventive strategies. These themes will be reviewed in this chapter

    Manganese transporter genetics and sex modify the association between environmental manganese exposure and neurobehavioral outcomes in children

    No full text
    There is increasing evidence that environmental manganese (Mn) exposure early in life can have negative effects on children's neurodevelopment and increase the risk of behavioral problems, including attention deficit hyperactivity disorder (ADHD). Factors that may contribute to differences in sensitivity to Mn exposure are sex and genetic variation of proteins involved in the regulation of Mn concentrations. Here we investigate if sex and polymorphisms in Mn transporter genes SLC30A10 and SLC39A8 influence the association between Mn exposure and ADHD-related behavioral problems in children. The SNPs rs1776029 and rs12064812 in SLC30A10, and rs13107325 in SLC39A8 were genotyped by TaqMan PCR or pyrosequencing in a population of Italian children (aged 11–14 years; n = 645) with a wide range of environmental Mn exposure. Mn in surface soil was measured in situ using XRF technology or modeled by geospatial analysis. Linear regression models or generalized additive models (GAM) were used for analyzing associations between soil Mn and neurobehavioral problems assessed by the Conners' behavior rating scales (self-, and parent-reported). Gene-environment interactions (Mn transporter genotype x soil Mn) were evaluated using a genetic score in which genotypes for the three SNPs were combined based on their association with blood Mn, as an indication of their influence on Mn regulation. We observed differences in associations between soil Mn and neurobehavior between sexes. For several self-reported Conners' scales, girls showed U-shaped relationships with higher (worse) Conners' scoring at higher soil Mn levels, and several parent-reported scales showed positive linear relationships between increasing soil Mn and higher Conner's scores. For boys, we observed a positive linear relationship with soil Mn for one Conner's outcome only (hyperactivity, parent-reported). We also observed some interactions between soil Mn and the genetic score on Conner's scales in girls and girls with genotypes linked to high blood Mn showed particularly strong positive associations between soil Mn and parent-reported Conners' scales. Our results indicate that sex and polymorphisms in Mn transporter genes contribute to differences in sensitivity to Mn exposure from the environment and that girls that are genetically less efficient at regulating Mn, may be a particularly vulnerable group

    COVID-19 Aftermath: Exploring the Mental Health Emergency among Students at a Northern Italian University

    Get PDF
    In this study, we investigated the symptoms of physical and mental health associated with lifestyle changes due to a lockdown among the students of a university in Northern Italy, one of the most affected areas in Europe during the first wave of COVID-19. We examined the psychopathological variations in relation to mental health problems in a young population. The goal was to develop interventions to resolve these new psychosocial problems. From June to July 2020, students participated in an anonymous survey asking about habits and symptoms that emerged during the lockdown and the COVID-19 pandemic. Five health outcomes were assessed: digestive disorders; headaches; fear of COVID-19; panic and anxiety crises; and depression/sadness. The conditions and duration of the social isolation, lifestyle, SARS-CoV-2 infection in the household, financial situation, and productivity were considered in the analysis. A total of 3533 students completed the survey. The participants experienced headaches, depression and sadness, digestive disorders, a fear of COVID-19, and anxiety/panic crises. The duration of isolation was associated with an increased risk of digestive disorders, headaches, and COVID-19 fear. The female gender, medium–intense telephone usage, sleep quality, memory difficulties, and performance reduction were associated with an increased risk of the health outcomes. Future interventions should focus on promoting and implementing different habits with the support of health and university organizations

    Metabolic Outcomes in Southern Italian Preadolescents Residing Near an Industrial Complex: The Role of Residential Location and Socioeconomic Status

    Get PDF
    Evidence suggests that environmental exposures and socioeconomic factors may interact to produce metabolic changes in children. We assessed the influence of residential location and socioeconomic status (SES) on pediatric body mass index (BMI) Z-score and fasting blood glucose (FBG) concentration. Participants included 214 children aged 6-11 years who live near a large industrial complex in Taranto, Italy. Participants were grouped into residential zones based on the distance between their home address and the complex periphery (Zone 1: 0.000-4.999 km, Zone 2: 5.000-9.999 km, Zone 3: 10.000-15.000 km). BMI Z-scores were calculated via World Health Organization (WHO) pediatric reference curves. FBG was obtained via venous blood sampling. Closer residential location to the industrial complex on the order of 5.000 km was significantly associated with worsened metabolic outcomes, particularly in female children. Zone 1 participants had higher BMI-adjusted FBG than Zone 2 and 3 participants (p < 0.05 versus Zone 2; p < 0.01 versus Zone 3). SES did not significantly influence BMI-adjusted FBG. Moreover, BMI Z-scores indicated high rates of overweight (22.0%) and obesity (22.9%) in the cohort. BMI Z-score was not significantly associated with SES or residential zone but was negatively associated with maternal education level (p < 0.05). These results offer new evidence that residing near industrial activity may predict adverse effects on child metabolic health
    corecore