116 research outputs found

    Photoaging and skin cancer: Is the inflammasome the missing link?

    Get PDF
    Photoaging and epithelial skin tumorigenesis are complex processes triggered mainly by UV radiation from chronic sun exposure. This leads to DNA damage and reactive oxygen species (ROS) production, which initiate an inflammatory response that alters cell structure and function. Changes in cell homeostasis and ROS production activate intracellular multiprotein platforms called inflammasomes. Inflammasomes nucleate around cytoplasmic receptors mainly of the NLR (nucleotide-binding domain and leucine-rich repeat) family and regulate caspase-1-dependant secretion of pro-inflammatory interleukin (IL)1β and IL18 cytokines, and an inflammatory form of death named pyroptosis. NLRP1 inflammasomes have taken centre stage in skin biology, as mutations in NLRP1 underlie the genetic etiology of dermatological diseases and increase the susceptibility to skin cancer. Targeting inflammasome(s) might be an important approach to improve skin inflammation, photoaging and reduce the risk of epithelial skin tumorigenesis. In this context, we discuss the potential implication of NLRP1 and NLRP3 inflammasomes

    Inflammasome biology, molecular pathology and therapeutic implications

    Get PDF
    Inflammasomes are intracellular multiprotein signaling complexes, mainly present in myeloid cells. They commonly assemble around a cytoplasmic receptor of the nucleotide-binding leucine-rich repeat containing receptor (NLR) family, although other cytoplasmic receptors like pyrin have been shown to forminflammasomes. The nucleation of the multiprotein scaffolding platform occurs upon detection of a microbial, a danger or a homeostasis pattern by the receptor that will, most commonly, associate with the adaptor protein ASC (apoptosis-associated speck-like protein containing a CARD) through homotypic domain interactions resulting in recruitment of procaspase-1. This will lead to the autoproteolytic activation of caspase-1, which regulates the secretion of proinflammatory IL1β and IL18 cytokines and pyroptosis, a caspase-1-mediated form of cell death. Pyroptosis occurs through cleavage of Gasdermin D, a membrane pore forming protein. Recently, non-canonical inflammasomes have been described, which directly sense intracellular pathogens through caspase-4 and -5 in humans, leading to pyroptosis. Inflammasomes are important in host defense; however, a deregulated activity is associated with a number of inflammatory, immune and metabolic disorders. Furthermore, mutations in inflammasome receptor coding genes are causal for an increasing number of rare autoinflammatory diseases. Biotherapies targeting the products of inflammasome activation aswell as molecules that directly or indirectly inhibit inflammasome nucleation and activation are promising therapeutic areas. This review discusses recent advances in inflammasome biology, the molecular pathology of several inflammasomes, and current therapeutic approaches in autoinflammatory diseases and in selected common multifactorial inflammasome-mediated disorders

    Mowat-Wilson syndrome: neurological and molecular study in seven patients

    Full text link
    Objective To present a seven-cases serie of Mowat-Wilson syndrome (MWS). Method All patients with positive mutation for the ZEB2 were evaluated by a geneticist and a neurologist, with clinical and laboratorial characterization. Results A peculiar facies and mental retardation were present in all patients. The Denver II scale showed intense delay in all aspects, especially fine motor and adaptive. Acquired microcephaly was observed in five patients. Only one patient did not present epilepsy. Epilepsy was focal and predominating in sleep, with status epilepticus in three patients. The initial seizure was associated with fever in most patients (4/6). The EEG showed epileptic focal activity (5/7). The imaging studies revealed total agenesis (4/7) and partial agenesis of the corpus callosum (1/7). Conclusion Physicians who care for patients with mental retardation and epilepsy should be aware of SMW

    Expanding the phenotype of the X-linked BCOR microphthalmia syndromes

    Get PDF
    Two distinct syndromes arise from pathogenic variants in the X-linked gene BCOR (BCL-6 corepressor): oculofaciocardiodental (OFCD) syndrome, which affects females, and a severe microphthalmia (‘Lenz’-type) syndrome affecting males. OFCD is an X-linked dominant syndrome caused by a variety of BCOR null mutations. As it manifests only in females, it is presumed to be lethal in males. The severe male X-linked recessive microphthalmia syndrome (‘Lenz’) usually includes developmental delay in addition to the eye findings and is caused by hypomorphic BCOR variants, mainly by a specific missense variant c.254C > T, p.(Pro85Leu). Here, we detail 16 new cases (11 females with 4 additional, genetically confirmed, affected female relatives; 5 male cases each with unaffected carrier mothers). We describe new variants and broaden the phenotypic description for OFCD to include neuropathy, muscle hypotonia, pituitary underdevelopment, brain atrophy, lipoma and the first description of childhood lymphoma in an OFCD case. Our male X-linked recessive cases show significant new phenotypes: developmental delay (without eye anomalies) in two affected half-brothers with a novel BCOR variant, and one male with high myopia, megalophthalmos, posterior embryotoxon, developmental delay, and heart and bony anomalies with a previously undescribed BCOR splice site variant. Our female OFCD cases and their affected female relatives showed variable features, but consistently had early onset cataracts. We show that a mosaic carrier mother manifested early cataract and dental anomalies. All female carriers of the male X-linked recessive cases for whom genetic confirmation was available showed skewed X-inactivation and were unaffected. In view of the extended phenotype, we suggest a new term of X-linked BCOR-related syndrome

    Genetic Analyses-Global strategy and study of pathogenic gene variants

    No full text
    International audienc

    The challenges in genomic analysis of Autoinflammatory disorders

    No full text
    International audienc

    Genomics in light of the current patients’ recruitment—a novel research strategy

    No full text
    International audienc

    Neonatal hypoglycaemia: aetiologies

    No full text
    International audienceDiagnosis of glucose status requires knowledge of the homeostatic mechanisms that maintain the blood glucose concentration between the narrow range of 2.5 and 7.5 mmol/l during periods of eating or fasting. Hypoglycaemia occurring within the first few hours after eating is suggestive of hyperinsulinism. Most glucose is subsequently converted into glycogen in the liver, and hypoglycaemia occurring during this phase is suggestive of glycogenosis. During fasting, gluconeogenesis progressively replaces glycogen as the major source of blood glucose, and hypoglycaemia occurring during this period is suggestive of impaired gluconeogenesis or fatty acid disorders. Growth hormone, glucagon, cortisol and insulin-like growth factor 1 deficiencies may also play a role. Other causes of hypoglycaemia have also been identified recently, namely glucose transporter disorders, respiratory chain disorders and congenital disorders of glycosylation
    corecore