970 research outputs found

    Limits on nu_e and anti-nu_e disappearance from Gallium and reactor experiments

    Full text link
    The deficit observed in the Gallium radioactive source experiments is interpreted as a possible indication of the disappearance of electron neutrinos. In the effective framework of two-neutrino mixing we obtain sin22ϑ0.03\sin^{2}2\vartheta \gtrsim 0.03 and Δm20.1eV2\Delta{m}^{2} \gtrsim 0.1 \text{eV}^{2}. The compatibility of this result with the data of the Bugey and Chooz reactor short-baseline antineutrino disappearance experiments is studied. It is found that the Bugey data present a hint of neutrino oscillations with 0.02sin22ϑ0.080.02 \lesssim \sin^{2}2\vartheta \lesssim 0.08 and Δm21.8eV2\Delta{m}^{2} \approx 1.8 \text{eV}^{2}, which is compatible with the Gallium allowed region of the mixing parameters. This hint persists in the combined analyses of Bugey and Chooz data, of Gallium and Bugey data, and of Gallium, Bugey, and Chooz data.Comment: 21 pages. Final version to be published in Phys. Rev.

    Reactor Fuel Fraction Information on the Antineutrino Anomaly

    Get PDF
    We analyzed the evolution data of the Daya Bay reactor neutrino experiment in terms of short-baseline active-sterile neutrino oscillations taking into account the theoretical uncertainties of the reactor antineutrino fluxes. We found that oscillations are disfavored at 2.6σ2.6\sigma with respect to a suppression of the 235U^{235}\text{U} reactor antineutrino flux and at 2.5σ2.5\sigma with respect to variations of the 235U^{235}\text{U} and 239Pu^{239}\text{Pu} fluxes. On the other hand, the analysis of the rates of the short-baseline reactor neutrino experiments favor active-sterile neutrino oscillations and disfavor the suppression of the 235U^{235}\text{U} flux at 3.1σ3.1\sigma and variations of the 235U^{235}\text{U} and 239Pu^{239}\text{Pu} fluxes at 2.8σ2.8\sigma. We also found that both the Daya Bay evolution data and the global rate data are well-fitted with composite hypotheses including variations of the 235U^{235}\text{U} or 239Pu^{239}\text{Pu} fluxes in addition to active-sterile neutrino oscillations. A combined analysis of the Daya Bay evolution data and the global rate data shows a slight preference for oscillations with respect to variations of the 235U^{235}\text{U} and 239Pu^{239}\text{Pu} fluxes. However, the best fits of the combined data are given by the composite models, with a preference for the model with an enhancement of the 239Pu^{239}\text{Pu} flux and relatively large oscillations.Comment: 9 page

    Mitochondrial Dysfunction in Friedreich Ataxia

    Get PDF
    Friedreich’s Ataxia (FRDA) is the commonest hereditary form of ataxia affecting the Western European population. FRDA is an autosomal recessive neurodegenerative disorder caused by an intronic GAA repeat expansion within the FXN gene; the 96% of the patients are homozygous, while the remaining 4% are compound heterozygous carrying the GAA repeat mutation on one allele and point mutations on the other one. FRDA first symptoms appear at young age during the firsts two decades of life. The clinical features include progressive gait and limb ataxia, dysarthria, muscle weakness, peripheral sensory neuropathy, pes cavus, and scoliosis. FRDA is a multi-systemic disorder; therefore, patients develop non-neurological signs, such as hypertrophic cardiomyopathy, diabetes, and urological problems

    Towards a unique formula for neutrino oscillations in vacuum

    Get PDF
    We show that all correct results obtained by applying quantum field theory to neutrino oscillations can be understood in terms of a single oscillation formula. In particular, the model proposed by Grimus and Stockinger is shown to be a subcase of the model proposed by Giunti, Kim and Lee, while the new oscillation formulas proposed by Ioannisian and Pilaftsis and by Shtanov are disproved. We derive an oscillation formula without making any relativistic assumption and taking into account the dispersion, so that the result is valid for both neutrinos and mesons. This unification gives a stronger phenomenological basis to the neutrino oscillation formula. We also prove that the coherence length can be increased without bound by more accurate energy measurements. Finally, we insist on the wave packet interpretation of the quantum field treatments of oscillations.Comment: 30 pages, 1 figure; the proof that plane wave oscillations do no exist is extended to stationary models; the influence of dispersion is explained in more detail

    Coherence of neutrino flavor mixing in quantum field theory

    Get PDF
    In the simplistic quantum mechanical picture of flavor mixing, conditions on the maximum size and minimum coherence time of the source and detector regions for the observation of interference---as well as the very viability of the approach---can only be argued in an ad hoc way from principles external to the formalism itself. To examine these conditions in a more fundamental way, the quantum field theoretical SS-matrix approach is employed in this paper, without the unrealistic assumption of microscopic stationarity. The fully normalized, time-dependent neutrino flavor mixing event rates presented here automatically reveal the coherence conditions in a natural, self-contained, and physically unambiguous way, while quantitatively describing the transition to their failure.Comment: 12 pages, submitted to Phys. Rev.

    Electromagnetic properties of neutrinos

    Full text link
    A short review on electromagnetic properties of neutrinos is presented. In spite of many efforts in the theoretical and experimental studies of neutrino electromagnetic properties, they still remain one of the main puzzles related to neutrinos.Comment: The talk presented by A.Studenikin at the International Conference on Topics in Astroparticle and Underground Physics, Rome (Italy), July 1-5, 200

    New Physics and Neutrino Oscillation

    Full text link
    Description of neutrino oscillation in the case of Non-Standard neutrino Interaction (NSI) is briefly presented. The NSI causes the entanglement between internal degrees of freedom of neutrinos (mass, spin, flavour) and other accompanying particles in the production and detection processes. In such case neutrinos are mostly in the mixed states. Role of the density matrix in description of neutrino oscillation process is shortly explained.Comment: 3 pages. Talk given at NOW 2010: Neutrino Oscillation Workshop, Conca Specchiulla (Otranto), Lecce, Italy, 4-11 Sep 201

    Real and complex random neutrino mass matrices and theta13

    Full text link
    Recently it has been shown that one of the basic parameters of the neutrino sector, so called theta13 angle is very small, but quite probably non-zero. We argue that the small value of theta13 can still be reproduced easily by a wide spectrum of randomly generated models of neutrino masses. For that we consider real and complex neutrino mass matrices, also including sterile neutrinos. A qualitative difference between results for real and complex mass matrices in the region of small theta13 values is observed. We show that statistically the present experimental data prefers random models of neutrino masses with sterile neutrinos.Comment: v3: Discussion about 3+1 scenario extended, fig 5,6 adde

    Paradoxes of neutrino oscillations

    Get PDF
    Despite the theory of neutrino oscillations being rather old, some of its basic issues are still being debated in the literature. We discuss, in the framework of the wave packet approach, a number of such issues, including the relevance of the "same energy" and "same momentum" assumptions, the role of quantum-mechanical uncertainty relations in neutrino oscillations, the dependence of the production/detection and propagation coherence conditions that ensure the observability of neutrino oscillations on neutrino energy and momentum uncertainties, the question of (in)dependence of the oscillation probabilities on the neutrino production and detection processes, the applicability limits of the stationary source approximation, and Lorentz invariance of the oscillation probability. We also develop a novel approach to calculation of the oscillation probability in the wave packet picture, based on the summation/integration conventions different from the standard one, which gives a new insight into the oscillation phenomenology. We discuss a number of apparently paradoxical features of the theory of neutrino oscillations.Comment: LaTeX, 45 pages, no figures. v2: references adde
    corecore