13 research outputs found

    The possible role of sex as an important factor in development and administration of lipid nanomedicine-based COVID-19 vaccine

    Get PDF
    Nanomedicine has demonstrated a substantial role in vaccine development against severe acute respiratory syndrome coronavirus (SARS-CoV-2 and COVID-19). Although nanomedicine-based vaccines have now been validated in millions of individuals worldwide in phase 4 and tracking of sex-disaggregated data on COVID-19 is ongoing, immune responses that underlie COVID-19 disease outcomes have not been clarified yet. A full understanding of sex-role effects on the response to nanomedicine products is essential to building an effective and unbiased response to the pandemic. Here, we exposed model lipid nanoparticles (LNPs) to whole blood of 18 healthy donors (10 females and 8 males) and used flow cytometry to measure cellular uptake by circulating leukocytes. Our results demonstrated significant differences in the uptake of LNP between male and female natural killer (NK) cells. The results of this proof-of-concept study show the importance of recipient sex as a critical factor which enables researchers to better consider sex in the development and administration of vaccines for safer and more-efficient sex-specific outcomes

    Inhibiting the growth of 3D brain cancer models with bio-coronated liposomal temozolomide

    Get PDF
    Nanoparticles (NPs) have emerged as an effective means to deliver anticancer drugs into the brain. Among various forms of NPs, liposomal temozolomide (TMZ) is the drug-of-choice for the treatment and management of brain tumours, but its therapeutic benefit is suboptimal. Although many possible reasons may account for the compromised therapeutic efficacy, the inefficient tumour penetration of liposomal TMZ can be a vital obstacle. Recently, the protein corona, i.e., the layer of plasma proteins that surround NPs after exposure to human plasma, has emerged as an endogenous trigger that mostly controls their anticancer efficacy. Exposition of particular biomolecules from the corona referred to as protein corona fingerprints (PCFs) may facilitate interactions with specific receptors of target cells, thus, promoting efficient internalization. In this work, we have synthesized a set of four TMZ-encapsulating nanomedicines made of four cationic liposome (CL) formulations with systematic changes in lipid composition and physical−chemical properties. We have demonstrated that precoating liposomal TMZ with a protein corona made of human plasma proteins can increase drug penetration in a 3D brain cancer model derived from U87 human glioblastoma multiforme cell line leading to marked inhibition of tumour growth. On the other side, by fine-tuning corona composition we have also provided experimental evidence of a non-unique effect of the corona on the tumour growth for all the complexes investigated, thus, clarifying that certain PCFs (i.e., APO-B and APO-E) enable favoured interactions with specific receptors of brain cancer cells. Reported results open new perspectives into the development of corona-coated liposomal drugs with enhanced tumour penetration and antitumour efficacy

    Opsonin-deficient nucleoproteic corona endows unPEGylated liposomes with stealth properties in vivo

    Get PDF
    For several decades, surface grafted polyethylene glycol (PEG) has been a go-to strategy for preserving the synthetic identity of liposomes in physiological milieu and preventing clearance by immune cells. However, the limited clinical translation of PEGylated liposomes is mainly due to the protein corona formation and the subsequent modification of liposomes’ synthetic identity, which affects their interactions with immune cells and blood residency. Here we exploit the electric charge of DNA to generate unPEGylated liposome/DNA complexes that, upon exposure to human plasma, gets covered with an opsonin-deficient protein corona. The final product of the synthetic process is a biomimetic nanoparticle type covered by a proteonucleotidic corona, or “proteoDNAsome”, which maintains its synthetic identity in vivo and is able to slip past the immune system more efficiently than PEGylated liposomes. Accumulation of proteoDNAsomes in the spleen and the liver was lower than that of PEGylated systems. Our work highlights the importance of generating stable biomolecular coronas in the development of stealth unPEGylated particles, thus providing a connection between the biological behavior of particles in vivo and their synthetic identity

    A Proteomic Study on the Personalized Protein Corona of Liposomes. Relevance for Early Diagnosis of Pancreatic DUCTAL Adenocarcinoma and Biomarker Detection

    No full text
    Due to late diagnosis, high incidence of metastasis, and poor survival rate, pancreatic cancer is one of the most leading cause of cancer-related death. Although manifold recent efforts have been done to achieve an early diagnosis of pancreatic cancer, CA-19.9 is currently the unique biomarker that is adopted for the detection, despite its limits in terms of sensitivity and specificity. To identify potential protein biomarkers for pancreatic ductal adenocarcinoma (PDAC), we used three model liposomes as nanoplatforms that accumulate proteins from human plasma and studied the composition of this biomolecular layer, which is known as protein corona. Indeed, plasma proteins adsorb on nanoparticle surface according to their abundance and affinity to the employed nanomaterial, thus even small differences between healthy and PDAC protein expression levels can be, in principle, detected. By mass spectrometry experiments, we quantified such differences and identified possible biomarkers for PDAC. Some of them are already known to exhibit different expressions in PDAC proteomes, whereas the role of other relevant proteins is still not clear. Therefore, we predict that the employment of nanomaterials and their protein corona may represent a useful tool to amplify the detection sensitivity of cancer biomarkers, which may be used for the early diagnosis of PDAC, with clinical implication for the subsequent therapy in the context of personalized medicine

    In vitro and ex vivo nano-enabled immunomodulation by the protein corona

    No full text
    New technologies with the capacity to tune immune system activity are highly desired in clinical practice and disease management. Here we demonstrate that nanoparticles with a protein corona enriched with gelsolin (GSN), an abundant plasma protein that acts as a modulator of immune responses, are avidly captured by human monocytic THP-1 cells in vitro and by leukocyte subpopulations derived from healthy donors ex vivo. In human monocytes, GSN modulates the production of tumor necrosis factor alpha (TNF-α) in an inverse dose-dependent manner. Overall, our results suggest that artificial coronas can be exploited to finely tune the immune response, opening new approaches for the prevention and treatment of diseases

    The Possible Role of Sex As an Important Factor in Development and Administration of Lipid Nanomedicine-Based COVID-19 Vaccine

    No full text
    Nanomedicine has demonstrated a substantial role in vaccine development against severe acute respiratory syndrome coronavirus (SARS-CoV-2 and COVID-19). Although nanomedicine-based vaccines have now been validated in millions of individuals worldwide in phase 4 and tracking of sex-disaggregated data on COVID-19 is ongoing, immune responses that underlie COVID-19 disease outcomes have not been clarified yet. A full understanding of sex-role effects on the response to nanomedicine products is essential to building an effective and unbiased response to the pandemic. Here, we exposed model lipid nanoparticles (LNPs) to whole blood of 18 healthy donors (10 females and 8 males) and used flow cytometry to measure cellular uptake by circulating leukocytes. Our results demonstrated significant differences in the uptake of LNP between male and female natural killer (NK) cells. The results of this proof-of-concept study show the importance of recipient sex as a critical factor which enables researchers to better consider sex in the development and administration of vaccines for safer and more-efficient sex-specific outcomes

    The protein corona reduces the anticancer effect of graphene oxide in HER-2-positive cancer cells

    No full text
    In the last decade, graphene oxide (GO)-based nanomaterials have attracted much attention for their potential anti-cancer properties against various cancer cell types. However, while in vitro studies are promising, following in vivo investigations fail to show any relevant efficacy. Recent research has clarified that the wide gap between benchtop discoveries and clinical practice is due to our limited knowledge about the physical–chemical transformation of nanomaterials in vivo. In physiological environments, nanomaterials are quickly coated by a complex dress of biological molecules referred to as the protein corona. Mediating the interaction between the pristine material and the biological system the protein corona controls the mechanisms of action of nanomaterials up to the sub-cellular level. Here we investigate the anticancer ability of GO in SK-BR-3 human breast cancer cells over-expressing the human epidermal growth factor receptor 2 (HER-2), which is functionally implicated in the cell growth and proliferation through the activation of downstream pathways, including the PI3K/AKT/mTOR and MAPK/ERK signaling cascades. Western blot analysis demonstrated that GO treatment resulted in a marked decrease in total HER-2, associated with a down-regulation of the expression and activation of protein kinase B (AKT) and extracellular signal-regulated kinase (ERK) thus indicating that GO may act as a potent HER-2 inhibitor. On the other side, the protein corona reverted the effects of GO on HER-2 expression and molecular downstream events to the control level. Our findings may suggest a mechanistic explanation of the reduced anticancer properties of GO-based nanomaterials in vivo. These results may also represent a good prediction strategy for the anticancer activity of nanomaterials designed for biomedical purposes, reaffirming the necessity of exploring their effectiveness under physiologically relevant conditions before moving on to the next in vivo studies

    Identification of a novel chalcone derivative that inhibits Notch signaling in T-cell acute lymphoblastic leukemia

    Get PDF
    Notch signaling is considered a rational target in the therapy of several cancers, particularly those harbouring Notch gain of function mutations, including T-cell acute lymphoblastic leukemia (T-ALL). Although currently available Notch-blocking agents are showing anti-tumor activity in preclinical studies, they are not effective in all the patients and often cause severe side-effects, limiting their widespread therapeutic use. Here, by functional and biological analysis of the most representative molecules of an in house library of natural products, we have designed and synthetized the chalcone-derivative 8 possessing Notch inhibitory activity at low micro molar concentration in T-ALL cell lines. Structure-activity relationships were afforded for the chalcone scaffold. Short term treatments with compound 8 resulted in a dose-dependent decrease of Notch signaling activity, halted cell cycle progression and induced apoptosis, thus affecting leukemia cell growth. Taken together, our data indicate that 8 is a novel Notch inhibitor, candidate for further investigation and development as an additional therapeutic option against Notch-dependent cancers

    Optimal centrifugal isolating of liposome-protein complexes from human plasma

    No full text
    In the past few years, characterization of the protein corona (PC) that forms around liposomal systems has gained increasing interest for the development of novel therapeutic and diagnostic technologies. At the crossroads of fast-moving research fields, the interdisciplinarity of protein corona investigations poses challenges for experimental design and reporting. Isolation of liposome-protein complexes from biological fluids has been identified as a fundamental step of the entire workflow of PC characterization but exact specifications for conditions to optimize pelleting remain elusive. In the present work, key factors affecting precipitation of liposome-protein complexes by centrifugation, including time of centrifugation, total sample volume, lipid : protein ratio and contamination from biological NPs were comprehensively evaluated. Here we show that the total amount of isolated liposome-protein complexes and the extent of contamination from biological NPs may vary with influence factors. Our results provide protein corona researchers with precise indications to separate liposome-protein complexes from protein-rich fluids and include proper controls, thus they are anticipated to catalyze improved consistency of data mining and computational modelling of protein corona composition
    corecore