8 research outputs found

    Observation of gravitational waves from the coalescence of a 2.5−4.5 M⊙ compact object and a neutron star

    Get PDF

    Search for eccentric black hole coalescences during the third observing run of LIGO and Virgo

    Get PDF
    Despite the growing number of confident binary black hole coalescences observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that were already identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total mass M>70 M⊙) binaries covering eccentricities up to 0.3 at 15 Hz orbital frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place an upper limit for the merger rate density of high-mass binaries with eccentricities 0<e≤0.3 at 0.33 Gpc−3 yr−1 at 90\% confidence level

    Ultralight vector dark matter search using data from the KAGRA O3GK run

    Get PDF
    Among the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we present the result of a search for U(1)B−L gauge boson DM using the KAGRA data from auxiliary length channels during the first joint observation run together with GEO600. By applying our search pipeline, which takes into account the stochastic nature of ultralight DM, upper bounds on the coupling strength between the U(1)B−L gauge boson and ordinary matter are obtained for a range of DM masses. While our constraints are less stringent than those derived from previous experiments, this study demonstrates the applicability of our method to the lower-mass vector DM search, which is made difficult in this measurement by the short observation time compared to the auto-correlation time scale of DM

    Inner Ear Conductive Hearing Loss and Unilateral Pulsatile Tinnitus Associated with a Dural Arteriovenous Fistula: Case Based Review and Analysis of Relationship between Intracranial Vascular Abnormalities and Inner Ear Fluids

    Get PDF
    While pulsatile tinnitus (PT) and dural arteriovenous fistula (DAVF) are not rarely associated, the finding of a conductive hearing loss (CHL) in this clinical picture is unusual. Starting from a case of CHL and PT, diagnosed to be due to a DAVF, we analyzed relationship between intracranial vascular abnormalities and inner ear fluids. DAVF was treated with endovascular embolization. Following this, there was a dramatic recovery of PT and of CHL, confirming their cause-effect link with DAVF. We critically evaluated the papers reporting this association. This is the first case of CHL associated with PT and DAVF. We describe the most significant experiences and theories reported in literature, with a personal analysis about the possible relationship between vascular intracranial system and labyrinthine fluids. In conclusion, we believe that this association may be a challenge for otolaryngologists. So we suggest to consider the possibility of a DAVF or other AVMs when PT is associated with CHL, without alterations of tympanic membrane and middle ear tests

    Effect of Anesthetic Drugs on Vestibular Evoked Myogenic PotentialRecording

    No full text
    The human saccule has preserved the ancestral ability to respond to high-intensity acoustic stimulations, generating a contraction reflex of the cervical tract muscles. Recording the muscular bioelectric potentials following saccular stimulation allows the evidence of the vestibular-evoked myogenic potentials (VEMPs). The aim of this study was to record VEMPs in alert and anesthetized guinea pigs to evaluate the possible different impacts of some anesthetic drugs on VEMP recording. Sixteen guinea pigs, divided into four groups, were employed for the study. Each group underwent general anesthesia induced using different pharmacological regimens; auditory and vestibular functions were examined with Auditory Brain Response (ABR) and VEMP methods. The analysis of the results showed that the VEMPs recording performance was strictly related to the alert status of the guinea pigs: VEMPs were not recordable during anesthesia while reappeared at awakening, with the same temporal and morphological characteristics of pre-anesthesia. ABR was instead normally present during anesthesia without showing any differences with all the various anesthetic drugs employed. These results prompted us to conclude that anesthetic drugs cause the disappearance of saccular reflex in guinea pigs, not minding the specific type of drugs employed. This evidence, in agreement with the data available in literature for humans, induces and encourages future studies about sacculocollic reflex and its possible application in clinical practice

    Specific microbiome signatures under the canopy of Mediterranean shrubs

    No full text
    Shrub encroachment (SE) is a phenomenon in which grasses and herbaceous vegetation are replaced by woody shrubs. Many previous studies have highlighted the effects of SE on soil respiration rates and nutrient storage, but little is known about impacts on soil microbiota. While previous work considered shrubs to be non-species specific or as a single intervening species, we selected an Ampelodemsos mauritanicus grassland and six coexisting shrubs (i.e. Pistacia lentiscus L., Juniperus phoenicea L., Myrtus communis L., Rosmarinus officinalis L., Olea europaea L., and Euphorbia dendroides L.) to investigate the effects of their encroachment on soil microbiota. We used high-throughput sequencing, coupled with soil chemical analyses and litter using 13C CPMAS NMR spectroscopy. Results showed a strong influence of shrub species on bacterial and fungal community diversity, species richness and overall community composition in the soil. Litter chemistry was dominated by O-alkyl-C, with the highest content in Ampelodesmos and E. dendroides, but richer of aromatic C in P. lentiscus and R. officinalis. Bacterial diversity was highest under J. phoenicea and E. dendroides, while lowest under R. officinalis and grassland. Conversely, fungal diversity was highest under O. europaea and E. dendroides, while lowest under M. communis and grassland. Moreover, soil C and N contents were highest under O. europaea, P. lentiscus and M. communis compared to the other shrub species. In addition, grassland and R. officinalis had the highest Fe content. Structural equation model (SEM) analysis ascertained that the shifts of bacterial and fungal community composition and diversity were closely related with the changes of litter and soil chemical properties. Our results suggest that the individual effect of each shrub on the grassland matrix depends mainly on the chemical properties of the shrub litter, which alters the chemical profile of the soil and, in cascade, shapes the associated microbiota
    corecore