55 research outputs found

    A detailed methodology to model the Non Contact Tonometry: a Fluid Structure Interaction study

    Get PDF
    Understanding the corneal mechanical properties has great importance in the study of corneal pathologies and the prediction of refractive surgery outcomes. Non-Contact Tonometry (NCT) is a non-invasive diagnostic tool intended to characterize the corneal tissue response in vivo by applying a defined air-pulse. The biomarkers inferred from this test can only be considered as indicators of the global biomechanical behaviour rather than the intrinsic biomechanical properties of the corneal tissue. A possibility to isolate the mechanical response of the corneal tissue is the use of an inverse finite element method, which is based on accurate and reliable modelling. Since a detailed methodology is still missing in the literature, this paper aims to construct a high-fidelity finite-element model of an idealized 3D eye for in silico NCT. A fluid-structure interaction (FSI) simulation is developed to virtually apply a defined air-pulse to a 3D idealized eye model comprising cornea, limbus, sclera, lens and humors. Then, a sensitivity analysis is performed to examine the influence of the intraocular pressure (IOP) and the structural material parameters on three biomarkers associated with corneal deformation. The analysis reveals the requirements for the in silico study linked to the correct reproduction of three main aspects: the air pressure over the cornea, the biomechanical properties of the tissues, and the IOP. The adoption of an FSI simulation is crucial to capture the correct air pressure profile over the cornea as a consequence of the air-jet. Regarding the parts of the eye, an anisotropic material should be used for the cornea. An important component is the sclera: the stiffer the sclera, the lower the corneal deformation due to the air-puff. Finally, the fluid-like behavior of the humors should be considered in order to account for the correct variation of the IOP during the test which will, otherwise, remain constant. The development of a strong FSI tool amenable to model coupled structures and fluids provides the basis to find the biomechanical properties of the corneal tissue in vivo

    Corvis ST biomarkers in healthy and keratoconus eyes: clinical and numerical evaluation

    Get PDF
    Non-Contact Tonometry (NCT) is a diagnostic tool intended to characterize corneal biomechanics in vivo. In order to analyze the response of the corneal tissue behavior, a numerical model could be of great help. This work aims to validate an in-silico NCT by comparing the clinical biomarkers of four patients to the numerical results of the same patient-specific simulations

    On the modeling of patient-specific transcatheter aortic valve replacement: a fluid–structure interaction approach

    Get PDF
    This is a post-peer-review, pre-copyedit version of an article published in Cardiovascular engineering and technology. The final authenticated version is available online at: http://dx.doi.org/10.1007/s13239-019-00427-0Purpose Transcatheter aortic valve replacement (TAVR) is a minimally invasive treatment for high-risk patients with aortic diseases. Despite its increasing use, many influential factors are still to be understood and require continuous investigation. The best numerical approach capable of reproducing both the valves mechanics and the hemodynamics is the fluid–structure interaction (FSI) modeling. The aim of this work is the development of a patient-specific FSI methodology able to model the implantation phase as well as the valve working conditions during cardiac cycles. Methods The patient-specific domain, which included the aortic root, native valve and calcifications, was reconstructed from CT images, while the CAD model of the device, metallic frame and pericardium, was drawn from literature data. Ventricular and aortic pressure waveforms, derived from the patient’s data, were used as boundary conditions. The proposed method was applied to two real clinical cases, which presented different outcomes in terms of paravalvular leakage (PVL), the main complication after TAVR. Results The results confirmed the clinical prognosis of mild and moderate PVL with coherent values of regurgitant volume and effective regurgitant orifice area. Moreover, the final release configuration of the device and the velocity field were compared with postoperative CT scans and Doppler traces showing a good qualitative and quantitative matching. Conclusion In conclusion, the development of realistic and accurate FSI patient-specific models can be used as a support for clinical decisions before the implantation.Peer ReviewedPostprint (author's final draft

    Utilizing numerical simulations to prevent stent graft kinking during thoracic endovascular aortic repair

    Get PDF
    Numerical simulations of thoracic endovascular aortic repair (TEVAR) may be implemented in the preoperative workflow if credible and reliable. We present the application of a TEVAR simulation methodology to an 82-year-old woman with a penetrating atherosclerotic ulcer in the left hemiarch, that underwent a left common carotid artery to left subclavian artery bypass and consequent TEVAR in zone 2. During the intervention, kinking of the distal thoracic stent graft occurred and the simulation was able to reproduce this event. This report highlights the potential and reliability of TEVAR simulations to predict perioperative adverse events and short-term postoperative technical results. (J Vasc Surg Cases Innov Tech 2023;9:101269.

    Non Contact Tonometry: a Fluid Structure Interaction study

    Get PDF
    Non Contact Tonometry is a clinical tool that records the displacement of the corneal surface caused by the application of an airflow. The measurements are not true representatives of corneal properties, but they are related. The proposed analysis simulates the test on an eye model to isolate the mechanical properties and establish clinical decisions

    Validation and Verification of High-Fidelity Simulations of Thoracic Stent-Graft Implantation

    Get PDF
    Thoracic Endovascular Aortic Repair (TEVAR) is the preferred treatment option for thoracic aortic pathologies and consists of inserting a self-expandable stent-graft into the pathological region to restore the lumen. Computational models play a significant role in procedural planning and must be reliable. For this reason, in this work, high-fidelity Finite Element (FE) simulations are developed to model thoracic stent-grafts. Experimental crimp/release tests are performed to calibrate stent-grafts material parameters. Stent pre-stress is included in the stent-graft model. A new methodology for replicating device insertion and deployment with explicit FE simulations is proposed. To validate this simulation, the stent-graft is experimentally released into a 3D rigid aortic phantom with physiological anatomy and inspected in a computed tomography (CT) scan at different time points during deployment with an ad-hoc set-up. A verification analysis of the adopted modeling features compared to the literature is performed. With the proposed methodology the error with respect to the CT is on average 0.92 +/- 0.64%, while it is higher when literature models are adopted (on average 4.77 +/- 1.83%). The presented FE tool is versatile and customizable for different commercial devices and applicable to patient-specific analyses

    Microcatheter tracking in thrombectomy procedures: A finite-element simulation study

    Get PDF
    Background and objective: Mechanical thrombectomy is a minimally invasive procedure that aims at removing the occluding thrombus from the vasculature of acute ischemic stroke patients. Thrombectomy success and failure can be studied using in-silico thrombectomy models. Such models require realistic modeling steps to be effective. We here present a new approach to model microcatheter tracking during thrombectomy. Methods: For 3 patient-specific vessel geometries, we performed finite-element simulations of the microcatheter tracking (1) following the vessel centerline (centerline method) and (2) as a one-step insertion simulation, where the microcatheter tip was advanced along the vessel centerline while its body was free to interact with the vessel wall (tip-dragging method). Qualitative validation of the two tracking methods was performed with the patient's digital subtraction angiography (DSA) images. In addition, we compared simulated thrombectomy outcomes (successful vs unsuccessful thrombus retrieval) and maximum principal stresses on the thrombus between the centerline and tip-dragging method. Results: Qualitative comparison with the DSA images showed that the tip-dragging method more realistically resembles the patient-specific microcatheter-tracking scenario, where the microcatheter approaches the vessel walls. Although the simulated thrombectomy outcomes were similar in terms of thrombus retrieval, the thrombus stress fields (and the associated fragmentation of the thrombus) were strongly different between the two methods, with local differences in the maximum principal stress curves up to 84%. Conclusions: Microcatheter positioning with respect to the vessel affects the stress fields of the thrombus during retrieval, and therefore, may influence thrombus fragmentation and retrieval in-silico thrombectomy

    A simplified mesoscale 3D model for characterizing fibrinolysis under flow conditions

    Get PDF
    One of the routine clinical treatments to eliminate ischemic stroke thrombi is injecting a biochemical product into the patient’s bloodstream, which breaks down the thrombi’s fibrin fibers: intravenous or intravascular thrombolysis. However, this procedure is not without risk for the patient; the worst circumstances can cause a brain hemorrhage or embolism that can be fatal. Improvement in patient management drastically reduced these risks, and patients who benefited from thrombolysis soon after the onset of the stroke have a significantly better 3-month prognosis, but treatment success is highly variable. The causes of this variability remain unclear, and it is likely that some fundamental aspects still require thorough investigations. For that reason, we conducted in vitro flow-driven fibrinolysis experiments to study pure fibrin thrombi breakdown in controlled conditions and observed that the lysis front evolved non-linearly in time. To understand these results, we developed an analytical 1D lysis model in which the thrombus is considered a porous medium. The lytic cascade is reduced to a second-order reaction involving fibrin and a surrogate pro-fibrinolytic agent. The model was able to reproduce the observed lysis evolution under the assumptions of constant fluid velocity and lysis occurring only at the front. For adding complexity, such as clot heterogeneity or complex flow conditions, we propose a 3-dimensional mesoscopic numerical model of blood flow and fibrinolysis, which validates the analytical model’s results. Such a numerical model could help us better understand the spatial evolution of the thrombi breakdown, extract the most relevant physiological parameters to lysis efficiency, and possibly explain the failure of the clinical treatment. These findings suggest that even though real-world fibrinolysis is a complex biological process, a simplified model can recover the main features of lysis evolution.</p

    Ockham’s razor for the MET-driven invasive growth linking idiopathic pulmonary fibrosis and cancer

    Full text link
    • …
    corecore