14 research outputs found

    Atypical presentation of Non-Hodgkin Lymphoma (NHL): a case report

    Get PDF
    Lymphomas infrequently cause peripheral nerve complications. These syndromes mostly occur by direct compression or infiltration of nerves (neurolymphomatosis), but may also be due to a remote effect as paraneoplastic syndromes, neurotoxic complications of chemotherapy, antibody-mediated or autoimmune mechanisms.We report the case of a 60-year-old woman who presented with a complex peripheral nervous system involvement as initial manifestation of Non-Hodgkin Lymphoma (NHL). This case sheds light on "protean" mechanism of peripheral nerve complications during the course of NHL and related diagnostic dilemma

    Early alterations of cortical thickness and gyrification in migraine without aura:a retrospective MRI study in pediatric patients

    Get PDF
    BACKGROUND: Migraine is the most common neurological disease, with high social-economical burden. Although there is growing evidence of brain structural and functional abnormalities in patients with migraine, few studies have been conducted on children and no studies investigating cortical gyrification have been conducted on pediatric patients affected by migraine without aura. METHODS: Seventy-two pediatric patients affected by migraine without aura and eighty-two controls aged between 6 and 18 were retrospectively recruited with the following inclusion criteria: MRI exam showing no morphological or signal abnormalities, no systemic comorbidities, no abnormal neurological examination. Cortical thickness (CT) and local gyrification index (LGI) were obtained through a dedicated algorithm, consisting of a combination of voxel-based and surface-based morphometric techniques. The statistical analysis was performed separately on CT and LGI between: patients and controls; subgroups of controls and subgroups of patients. RESULTS: Patients showed a decreased LGI in the left superior parietal lobule and in the supramarginal gyrus, compared to controls. Female patients presented a decreased LGI in the right superior, middle and transverse temporal gyri, right postcentral gyrus and supramarginal gyrus compared to male patients. Compared to migraine patients younger than 12 years, the ≥ 12-year-old subjects showed a decreased CT in the superior and middle frontal gyri, pre- and post-central cortex, paracentral lobule, superior and transverse temporal gyri, supramarginal gyrus and posterior insula. Migraine patients experiencing nausea and/or vomiting during headache attacks presented an increased CT in the pars opercularis of the left inferior frontal gyrus. CONCLUSIONS: Differences in CT and LGI in patients affected by migraine without aura may suggest the presence of congenital and acquired abnormalities in migraine and that migraine might represent a vast spectrum of different entities. In particular, ≥ 12-year-old pediatric patients showed a decreased CT in areas related to the executive function and nociceptive networks compared to younger patients, while female patients compared to males showed a decreased CT of the auditory cortex compared to males. Therefore, early and tailored therapies are paramount to obtain migraine control, prevent cerebral reduction of cortical thickness and preserve executive function and nociception networks to ensure a high quality of life

    Secondary cytomegalovirus infections: How much do we still not know? Comparison of children with symptomatic congenital cytomegalovirus born to mothers with primary and secondary infection

    Get PDF
    Congenital cytomegalovirus (cCMV) infection can follow primary and secondary maternal infection. Growing evidence indicate that secondary maternal infections contribute to a much greater proportion of symptomatic cCMV than was previously thought. We performed a monocentric retrospective study of babies with cCMV evaluated from August 2004 to February 2021; we compared data of symptomatic children born to mothers with primary or secondary infection, both at birth and during follow up. Among the 145 babies with available data about maternal infection, 53 were classified as having symptomatic cCMV and were included in the study: 40 babies were born to mothers with primary infection and 13 babies were born to mothers with secondary infection. Analyzing data at birth, we found no statistical differences in the rate of clinical findings in the two groups, except for unilateral sensorineural hearing loss (SNHL) which was significantly more frequent in patients born to mother with secondary infection than in those born to mother with primary infection (46.2 vs. 17.5%, P = 0.037). During follow up, we found a higher rate of many sequelae (tetraparesis, epilepsy, motor and speech delay, and unilateral SNHL) in the group of children born to mothers with secondary infection, with a statistical difference for tetraparesis and unilateral SNHL. Otherwise, only children born to mothers with primary infection presented bilateral SNHL both at birth and follow up. Our data suggest that the risk of symptomatic cCMV and long-term sequelae is similar in children born to mother with primary and secondary CMV infection; it is important to pay appropriate attention to seropositive mothers in order to prevent reinfection and to detect and possibly treat infected babies

    Atypical presentation of Non-Hodgkin Lymphoma (NHL): a case report

    Get PDF
    Lymphomas infrequently cause peripheral nerve complications. These syndromes mostly occur by direct compression or infiltration of nerves (neurolymphomatosis), but may also be due to a remote effect as paraneoplastic syndromes, neurotoxic complications of chemotherapy, antibody-mediated or autoimmune mechanisms. We report the case of a 60-year-old woman who presented with a complex peripheral nervous system involvement as initial manifestation of Non-Hodgkin Lymphoma (NHL). This case sheds light on “protean” mechanism of peripheral nerve complications during the course of NHL and related diagnostic dilemma

    Morphometric Analysis of Brain in Newborn with Congenital Diaphragmatic Hernia

    No full text
    Congenital diaphragmatic hernia (CDH) is a severe pediatric disorder with herniation of abdominal viscera into the thoracic cavity. Since neurodevelopmental impairment constitutes a common outcome, we performed morphometric magnetic resonance imaging (MRI) analysis on CDH infants to investigate cortical parameters such as cortical thickness (CT) and local gyrification index (LGI). By assessing CT and LGI distributions and their correlations with variables which might have an impact on oxygen delivery (total lung volume, TLV), we aimed to detect how altered perfusion affects cortical development in CDH. A group of CDH patients received both prenatal (i.e., fetal stage) and postnatal MRI. From postnatal high-resolution T2-weighted images, mean CT and LGI distributions of 16 CDH were computed and statistically compared to those of 13 controls. Moreover, TLV measures obtained from fetal MRI were further correlated to LGI. Compared to controls, CDH infants exhibited areas of hypogiria within bilateral fronto-temporo-parietal labels, while no differences were found for CT. LGI significantly correlated with TLV within bilateral temporal lobes and left frontal lobe, involving language- and auditory-related brain areas. Although the causes of neurodevelopmental impairment in CDH are still unclear, our results may suggest their link with altered cortical maturation and possible impaired oxygen perfusion

    From Fetal to Neonatal Neuroimaging in TORCH Infections: A Pictorial Review

    No full text
    Congenital infections represent a challenging and varied clinical scenario in which the brain is frequently involved. Therefore, fetal and neonatal neuro-imaging plays a pivotal role in reaching an accurate diagnosis and in predicting the clinical outcome. Congenital brain infections are characterized by various clinical manifestations, ranging from nearly asymptomatic diseases to syndromic disorders, often associated with severe neurological symptoms. Brain damage results from the complex interaction among the infectious agent, its specific cellular tropism, and the stage of development of the central nervous system at the time of the maternal infection. Therefore, neuroradiological findings vary widely and are the result of complex events. An early detection is essential to establishing a proper diagnosis and prognosis, and to guarantee an optimal and prompt therapeutic perinatal management. Recently, emerging infective agents (i.e., Zika virus and SARS-CoV2) have been related to possible pre- and perinatal brain damage, thus expanding the spectrum of congenital brain infections. The purpose of this pictorial review is to provide an overview of the current knowledge on fetal and neonatal brain neuroimaging patterns in congenital brain infections used in clinical practice

    Deep Learning Can Differentiate IDH-Mutant from IDH-Wild GBM

    No full text
    Isocitrate dehydrogenase (IDH) mutant and wildtype glioblastoma multiforme (GBM) often show overlapping features on magnetic resonance imaging (MRI), representing a diagnostic challenge. Deep learning showed promising results for IDH identification in mixed low/high grade glioma populations; however, a GBM-specific model is still lacking in the literature. Our aim was to develop a GBM-tailored deep-learning model for IDH prediction by applying convoluted neural networks (CNN) on multiparametric MRI. We selected 100 adult patients with pathologically demonstrated WHO grade IV gliomas and IDH testing. MRI sequences included: MPRAGE, T1, T2, FLAIR, rCBV and ADC. The model consisted of a 4-block 2D CNN, applied to each MRI sequence. Probability of IDH mutation was obtained from the last dense layer of a softmax activation function. Model performance was evaluated in the test cohort considering categorical cross-entropy loss (CCEL) and accuracy. Calculated performance was: rCBV (accuracy 83%, CCEL 0.64), T1 (accuracy 77%, CCEL 1.4), FLAIR (accuracy 77%, CCEL 1.98), T2 (accuracy 67%, CCEL 2.41), MPRAGE (accuracy 66%, CCEL 2.55). Lower performance was achieved on ADC maps. We present a GBM-specific deep-learning model for IDH mutation prediction, with a maximal accuracy of 83% on rCBV maps. Highest predictivity achieved on perfusion images possibly reflects the known link between IDH and neoangiogenesis through the hypoxia inducible factor

    A New Pattern of Brain and Cord Gadolinium Enhancement in Molybdenum Cofactor Deficiency: A Case Report

    No full text
    Molybdenum cofactor deficiency (MoCD) is a rare and severe autosomal recessive in-born error of metabolism caused by the mutation in MOCS1, MOCS2, MOCS3 or GEPH genes, with an incidence ranging between 1 in 100,000 and 200,000 live births. The clinical presentation with seizures, lethargy and neurologic deficits reflects the neurotoxicity mediated via sulphite accumulation, and it occurs within the first hours or days after birth, often leading to severe neurodegeneration and the patient’s death within days or months. The Imaging of Choice is a brain-specific MRI technique, which is usually performed without contrast and shows typical radiological findings in the early phase, such as diffuse cerebral oedema and infarction affecting the cortex and the basal ganglia and the white matter, as well as in the late phase, such as multicystic encephalomalacia. Our case report represents a novelty in the field, since the patient underwent a contrast-enhanced MRI to exclude a concomitant infectious disease. In the frame of the clinical presentation and laboratory data, we describe the MoCD Imaging findings for MRI morphological and advanced sequences, presenting a new contrast-enhanced MRI pattern characterized by the diffuse and linear leptomeningeal enhancement of brain, cord and spinal roots. The early identification of molybdenum cofactor deficiency is crucial because it may lead to the best multidisciplinary therapy for the patient, which is focused on the prompt and optimal management of the complications
    corecore