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RESEARCH ARTICLE Open Access

Early alterations of cortical thickness and
gyrification in migraine without aura: a
retrospective MRI study in pediatric
patients
Alessia Guarnera1,2, Francesca Bottino3, Antonio Napolitano3*, Giorgia Sforza4, Marco Cappa5, Laura Chioma5,
Luca Pasquini2,6, Maria Camilla Rossi-Espagnet1,2, Giulia Lucignani1, Lorenzo Figà-Talamanca1, Chiara Carducci1,
Claudia Ruscitto7, Massimiliano Valeriani4,8, Daniela Longo1† and Laura Papetti4†

Abstract

Background: Migraine is the most common neurological disease, with high social-economical burden. Although
there is growing evidence of brain structural and functional abnormalities in patients with migraine, few studies
have been conducted on children and no studies investigating cortical gyrification have been conducted on
pediatric patients affected by migraine without aura.

Methods: Seventy-two pediatric patients affected by migraine without aura and eighty-two controls aged between
6 and 18 were retrospectively recruited with the following inclusion criteria: MRI exam showing no morphological
or signal abnormalities, no systemic comorbidities, no abnormal neurological examination. Cortical thickness (CT)
and local gyrification index (LGI) were obtained through a dedicated algorithm, consisting of a combination of
voxel-based and surface-based morphometric techniques. The statistical analysis was performed separately on CT
and LGI between: patients and controls; subgroups of controls and subgroups of patients.

Results: Patients showed a decreased LGI in the left superior parietal lobule and in the supramarginal gyrus,
compared to controls. Female patients presented a decreased LGI in the right superior, middle and transverse
temporal gyri, right postcentral gyrus and supramarginal gyrus compared to male patients. Compared to migraine
patients younger than 12 years, the ≥ 12-year-old subjects showed a decreased CT in the superior and middle
frontal gyri, pre- and post-central cortex, paracentral lobule, superior and transverse temporal gyri, supramarginal
gyrus and posterior insula. Migraine patients experiencing nausea and/or vomiting during headache attacks
presented an increased CT in the pars opercularis of the left inferior frontal gyrus.
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Conclusions: Differences in CT and LGI in patients affected by migraine without aura may suggest the presence of
congenital and acquired abnormalities in migraine and that migraine might represent a vast spectrum of different
entities. In particular, ≥ 12-year-old pediatric patients showed a decreased CT in areas related to the executive
function and nociceptive networks compared to younger patients, while female patients compared to males
showed a decreased CT of the auditory cortex compared to males. Therefore, early and tailored therapies are
paramount to obtain migraine control, prevent cerebral reduction of cortical thickness and preserve executive
function and nociception networks to ensure a high quality of life.

Keywords: migraine, aura, magnetic resonance imaging, cortical thickness, local gyrification index, cortical
morphometry, cortical abnormalities, pediatric, phonophobia

Background
Migraine is the most common neurological disease [1–
3] and ranks among the most disabling medical condi-
tions, according to the WHO (World Health
Organization) [4], with significant socio-economic
burden[5].
Despite its high frequency, migraine pathophysiology

and structural-functional features are far from being
fully understood[6].
There is growing evidence that migraine may be a pro-

gressive disorder and cause brain structural and functional
alterations [7–9]. Therefore, several Magnetic Resonance
studies on these abnormalities have been conducted dur-
ing the last two decades. Literature has mainly focused on
adult populations [6, 9] and many studies have been con-
ducted on small cohort samples, frequently with no dis-
tinction among the different migraine subtypes[10].
Migraine is a complex disorder, that may be related to

an intrinsic predisposition reflected by anomalies in cor-
tical gyrification and disease-related processes acting on
cortical thickness. Studies on children are required to
clarify the precise onset and nature of underlying cor-
tical changes [6, 11].
The investigation of pediatric migraine has frequently

been encouraged to improve our understanding of the
different features of the disease in children, such as dur-
ation and associated symptoms[6, 9].
To the best of our knowledge, no studies on cortical

gyrification index have been conducted on children af-
fected by migraine without aura and no studies have in-
vestigated a possible correlation between various migraine
symptoms and gyrification abnormalities in pediatric
populations.
The main goals of our study were to: (1) identify dif-

ferent patterns of cortical thickness and gyrification in
pediatric patients affected by migraine without aura
compared to healthy controls; (2) investigate possible
correlations between these MRI parameters and clinical
and demographic characteristics in patients compared to
healthy controls; (3) evaluate any correlations between
these MRI parameters and clinical and demographic

characteristics among subgroups of patients, to identify
potential brain imaging biomarkers.

Methods
Participants
The study was conducted in accordance with the ethical
standards of the Institutional Research Committee and
in accordance with the Helsinki Declaration and subse-
quent amendments. Informed consent was obtained
from the Patients or their tutors prior to the MRI
examination.
Patients were retrospectively recruited by reviewing

Bambino Gesù Hospital Imaging archive from the 1st of
January 2018 to the 31st of October 2020 using “head-
ache” and “migraine” as keywords.
Two radiologists, respectively with thirty and six years

of experience, performed a double-blinded analysis of pa-
tients’ MRIs and any disagreement was resolved through a
consensus. We included a total of 201 patients aged be-
tween 6 and 18 years with a high quality MRI including
3D T1 MPRAGE (Magnetization Prepared Rapid Gradient
Echo Imaging) sequence and showing no morphological
or signal abnormalities.
An experienced neurologist reviewed patients’ medical

records. Exclusion criteria were as follows: abnormal
neurological examination; migraine attack during MRI;
migraine prophylactic therapy; migraine abortive therapy
within 24 h before the exam; catamenial migraines; sleep
disorders; special abilities (athletic or artistic); major sys-
temic disorders (psychological, oncological, vascular or
other); maternal pathologies during pregnancy.
Eighty patients suffering from migraine without aura

were interviewed and visited by two neurologists to con-
firm the diagnosis of migraine without aura according to
the International Classification of Headache (ICHD3)
[12] and to collect additional data.
In an anonymized database the following patients’ data

were reported: demographic characteristics, laterality of
migraine; migraine monthly days; personal and familiar
history of migraine; pain intensity; associated symptoms
(photophobia, phonophobia, nausea and vomiting).
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The final cohort of patients consisted of 72 patients
aged between 6 and 18 years (F:42) affected by episodic
migraine without aura with a high-quality MRI exam ac-
quired during the inter-ictal phase. The quality check of
MRI examinations excluded the presence of signal and/
or morphological abnormalities which may affect cortical
gyrification index and thickness due to confounding fac-
tors such as WM lesions, which have been suggested to
contribute to GM changes [13–15].
Eighty-two healthy subjects aged between 6 and 18

years (F:40) formed the control group with optimal age
and sex matching to minimize variability [16, 17]. These
subjects presented a high quality MRI exam without
morphological and signal abnormalities and were inter-
viewed and visited by a neurologist before inclusion in
the control group in order to exclude migraine and
other neurological diseases. No familiarity for migraine
and/or headache was reported among healthy controls.

MRI protocol
Patients and controls brain MRIs were performed on the
same 3T scanner (Magnetom Skyra, Siemens, Erlangen,
Germany) with a 32-channel brain coil (L-W-H: 440 mm
× 330mm × 370 mm) and the following protocol: axial
turbo spin-echo T2 (TR 6380 ms, TE 109ms, ST 3mm);
coronal turbo spin-echo T2 (TR 6380 ms, TE 109ms, FA
150°, ST 3mm); axial FLAIR (TR 9000ms, TE 81ms, TI
2500ms, FA 150°, ST 3mm); axial DWI (TR 6400ms, TE
98ms, FA 75°, ST 4mm); sagittal 3D T1 MPRAGE (TR
1570ms, TE 2.67ms, TI 900ms, FA 9°, ST 0.8mm).

Data processing
Data was pre-processed with FreeSurfer 5.3 software
[18], using a standard automatic pipeline (i.e. recon-all)
that sequentially performed skull stripping, noise, bias,
intensity correction and transformation to Talairach-
Tournoux space to produce grey matter (GM) and white
matter (WM) segmentation. Particularly, the FreeSurfer
automatic pipeline determined and tessellated the GM–
WM boundary to generate the inner cortical surface
(white surface), by combining information from tissue
intensity and neighborhood constraints. The outer sur-
face (pial surface) was generated through the expansion
of the white surface with a point-to-point correspond-
ence. Moreover, the FreeSurfer automatic pipeline com-
puted Cortical thickness (CT) for each subject as the
average distance measured from each surface to the
other, according to Fischl and Dale [19]. The recon-
structed white and grey surfaces obtained were visually
checked to verify and correct any algorithmic misinter-
pretation of gyri and sulci. Local gyrification indices
(LGI) were computed vertex-wise over the entire cortex
by using the novel approach proposed by Lyu et al.
(https://github.com/ilwoolyu/LocalGyrificationIndex)

[20], which is based on adaptive kernel for quantification
of the local cortical folding. This algorithm quantifies
cortical gyrification based on a spatially-adaptive kernel,
which incorporates neighboring gyral crowns and sulcal
fundi.
For statistical purposes and visualization, each subject

was registered on Fsaverage brain surfaces, widely used
in children’s and teenagers’ studies [21–23]. Fsaverage
surfaces are composed by 163,842 total vertices which
represent an index of spatial resolution for analyses per-
formed across the brain surface grid based.

Statistical analysis
Sample sizes were estimated a priori as indicated by Par-
doe et al. [24]. In particular, 50 subjects for each sample
are required to detect a 0.25mm cortical thickness differ-
ence and 10 subjects per group are required to detect a
1mm cortical thickness difference [24]. Power calcula-
tion was set at 0.8 and type I error was set at p < 0.05.
Univariate analysis of variance was carried out with SPSS
software (PAWS Statistics 18.0) to test between-group
differences in demographic variables. The statistical ana-
lysis was performed separately on CT and LGI between:
healthy subjects and patients; subgroups of healthy con-
trols and subgroups of patients (Table 1). We tested
group differences in cortical parameters distributions by
CT and LGI vertex-wise value mapping on a common
spherical coordinate system (i.e. fsaverage), using spher-
ical transformation. Differences among groups were
assessed using the permutation test (1000 permutations
per test) based on t statistics, performed with the Per-
mutation Analysis of Linear Models (PALM) FSL pack-
age. Subjects age was used as covariate of no interest.
Age was mean centered (across all subjects) by subtract-
ing the overall mean age from each individual age. We
also computed Threshold-Free Cluster Enhancement
statistical maps, where the initial raw statistical images
were enhanced using both the intensity of the data point
and information from neighboring voxels[25]. Differ-
ences between groups were detected by thresholding at
family-wise error (FWE), corrected at p < 0.05.

Results
The main demographic and clinical characteristics of pa-
tients with migraine and healthy control subjects are sum-
marized in Table 2. Neither sex distribution (P = 0.2) nor
mean age (P = 0.2) significantly differed between patients
with migraine and healthy control subjects. Results were
corrected in order to avoid false positives [10, 16, 17].

Cortical Gyrification
Patients showed a decreased gyrification index in the left
superior parietal lobule and in the left inferior parietal
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Table 1 Statistical analysis performed on Cortical Thickness and Local Gyrification Index

PATIENTS VS CONTROLS

Cohort 1 N° Cohort 2 N°

Patients 72 Controls 82

Patients < 12 y 42 Controls < 12 y 46

Patients≥ 12y 30 Controls≥ 12y 36

SUBGROUPS OF CONTROLS

Cohort 1 N° Cohort 2 N°

< 12y 46 ≥ 12y 36

Females 41 Males 41

SUBGROUPS OF PATIENTS

Cohort 1 N° Cohort 2 N°

Patients < 12y 42 ≥ 12y 30

Females 42 Males 30

Patients with MMD < 5 42 Patients with MMD≥ 5 30

Patients with photophobia and phonophobia 41 Patients with photophobia or phonophobia 62

Patients with photophobia 50 Patients without photophobia 22

Patients with nausea and/or vomiting 38 Patients without nausea and/or vomiting 34

The table illustrates the statistical analysis performed separately on cortical thickness and gyrification between: healthy patients and patients; subgroups of healthy
controls and subgroups of patients. Cohort 1 and cohort 2 indicate the two groups of patients compared for each statistical analysis and n° indicates the number of
patients forming a particular cohort.
MMD: migraine monthly days.

Table 2 Main demographic and clinical characteristics of healthy controls and patients affected by migraine without aura. Neither
gender distribution (P = 0.2) nor mean age (P = 0.2) significantly differed between patients with migraine and healthy control
subjects

Characteristics Healthy Controls Patients

N° of Subjects 82 72

N° of Subjects < 12 years 46 42

N° of Subjects≥ 12 years 36 30

N° F/M 41/41 42/30

Mean Age in years (STD) 10.96 (3.75) 11.73 (3.19)

N° of Subjects presenting MMG < 5 - 42

N° of Subjects presenting MMG≥ 5 - 30

Migraine Duration per attack
in hours (N° of patients)

- < 2 h (26), <4 h (27), < 72 h (19)

Months since first attack (n° of patients) - < 6 (3), < 12 (12), < 24 (13), < 36 (19), < 72 (25)

Pain Intensity - mild (20), moderate (22), severe (30)

N° of Subjects presenting Photophobia - 50

N° of Subjects presenting Phonophobia - 53

N° of Subjects presenting Nausea - 35

N° of Subjects presenting Vomiting - 16

N° of Subjects presenting familiar cases of migraine - None (9), Mother (35), Father (7), Both parents (21)

F/M: females/males; STD: standard deviation; MMD: migraine monthly days.
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lobule, particularly in the supramarginal gyrus, com-
pared to healthy controls (p < 0.05). We found a de-
creased gyrification index in the right superior, middle
and transverse temporal gyri, in the right postcentral
gyrus and in the right supramarginal gyrus in females
compared to male patients (p < 0.05) (Table 3). Statistical
results including p-value maps are displayed on a com-
mon surface template in Fig. 1.

Cortical Thickness
Patients ≥ 12-year-old showed decreased cortical thick-
ness compared to younger ones, particularly involving:
superior and middle frontal gyri, pre- and post-central
cortex, paracentral lobule, superior and transverse

temporal gyri, supramarginal gyrus and posterior insula.
Migraine patients experiencing nausea and/or vomiting
during headache attacks presented an increased cortical
thickness in the pars opercularis of the inferior frontal
gyrus (Table 3). Statistical results including p-value maps
are displayed on a common surface template in Fig. 2.

Discussion
We found abnormalities in local gyrification index and
cortical thickness in patients affected by migraine with-
out aura compared to healthy controls and among pa-
tient subgroups. This evidence supports the idea of
migraine being a complex pathology, possibly related to

Table 3 Results obtained from the statistical analysis performed on Cortical Thickness and Local Gyrification Index

LOCAL GYRIFICATION INDEX

Patients vs.
Controls

Patients < Controls n°
Vertices

Mean
p
value

Controls Mean LGI (STD) Patients Mean LGI (STD)

Left supramarginal gyrus 1262 0.01 3.53 (2.40) 3.51 (2.33)

Left superior parietal gyrus 1014 0.01 3.68 (2.57) 3.65 (2.52)

Left inferior parietal gyrus 256 0.02 4.03 (2.74) 4.00 (2.66)

Subgroups
of Patients

Females <Males n°
Vertices

Mean
p
value

F Mean LGI (STD) M Mean LGI (STD)

Right postcentral gyrus 187 0.05 3.40 (1.81) 3.49 (1.88)

Right supramarginal gyrus 888 0.05 3.25 (1.79) 3.30 (1.87)

Right superior temporal gyrus 724 0.04 3.41 (2.09) 3.47 (2.17)

Right middle temporal gyrus 111 0.05 3.95 (2.67) 4.04 (2.75)

Right transverse temporal gyrus 405 0.04 3.30 (2.01) 3.37 (2.09)

CORTICAL THICKNESS

Subgroups
of Patients

Patients < 12y > Patients ≥ 12y n°
Vertices

Mean
p
value

Patients < 12y Mean CT (STD) in
mm

Patients ≥ 12y Mean CT
(STD)

Left superior frontal gyrus 356 0.02 2.43 (0.98) 2.36 (0.96)

Left middle frontal gyrus 434 0.02 2.78 (0.67) 2.71 (0.65)

Left precentral gyrus 3914 0.02 2.74 (0.73) 2.67 (0.71)

Left postcentral gyrus 705 0.02 2.67 (0.74) 2.61 (0.72)

Left paracentral lobule 1186 0.02 2.61 (0.85) 2.54 (0.83)

Left superior temporal gyrus 739 0.03 2.73 (0.74) 2.65 (0.72)

Left transverse temporal gyrus 427 0.03 2.66 (0.78) 2.58 (0.76)

Left supramarginal gyrus 523 0.03 2.71 (0.80) 2.64 (0.79)

Left posterior insula 361 0.03 2.64 (0.74) 2.56 (0.72)

Patients with nausea and/or vomiting >
Patients without nausea and/or vomiting

n°
Vertices

Mean
p
value

Patients without nausea and/or
vomiting Mean CT (STD) in mm

Patients with nausea and/
or vomiting Mean CT (STD)

Left pars opercularis 113 0.04 2.52 (0.94) 2.48 (0.92)

The table illustrates the results from statistical analysis performed separately on cortical thickness and gyrification between: healthy patients and patients; subgroups of
healthy controls and subgroups of patients.
LGI: local gyrification index; CT: cortical thickness; mm: millimetres.
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congenital and acquired brain abnormalities presenting
from a very young age.
The working theory describes migraine pathogenesis

as related to hyperexcitability of the trigeminovascular

system. Specifically, cortical spreading depressions
may promote the release of molecular mediators in
the dura resulting in meningeal inflammation and
sensory excitation of trigeminal afferences. This

Fig. 1 The figure shows differences in local gyrification index in patients compared to healthy controls (A) and in female patients compared to
male patients (B). In a, regions of decreased local gyrification index in patients vs. controls are shown through a color scale ranging from yellow
(p < 0.05) to red (p < 0.01). In b, regions of decreased local gyrification index in females vs. males are shown through a color scale ranging from
yellow (p < 0.05) to red (p < 0.03). Only the most representative views are shown.
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nociceptive information is then projected on multiple
cortical areas through central brain regions, leading to
migraine symptoms [26].

Although its specific role in these processes is far from
being fully understood, the cortex has been linked to the
modulation and representation of pain in migraine as
well as to the amplification of sensory inputs [27].

Fig. 2 The figure shows differences in cortical thickness in ≥ 12-year-old patients compared to < 12-year-old patients (A) and in patients with
nausea and/or vomiting compared to patients without nausea and/or vomiting (B). In a, regions of decreased cortical thickness in ≥ 12-year-old
patients vs. < 12-year-old patients are shown through a colour scale ranging from yellow (p < 0.05) to red (p < 0.007). In b, regions of increased
cortical thickness in patients with nausea and/or vomiting vs. patients without nausea and/or vomiting are shown through a colour scale ranging
from yellow (p < 0.05) to red (p < 0.007). Only the most representative views are shown.

Guarnera et al. The Journal of Headache and Pain           (2021) 22:79 Page 7 of 13



Neuroimaging studies have demonstrated that mi-
graine patients present functional and morphological ab-
normalities compared to controls in relation to variables
such as attack frequency or migraine attack duration,
suggesting a possible link between anatomical and brain
changes [28–30]. In particular, neuroimaging studies
demonstrated macroscopic and microscopic changes in
the brain of migraine patients, together with functional
networks modifications [31].

Local Gyrification Index
Cortical gyrification is a complex process, which mainly
takes place during the late fetal development and con-
sists in cerebral cortex folding to allow cortical surface
increase [11, 32, 33]. As it remains essentially stable dur-
ing life, differences in cortical gyrification may reflect a
congenital predisposition to develop migraine.
Despite the crucial information that cortical gyrification

may offer, only two studies have investigated gyrification
index changes in small cohorts of adults affected by mi-
graine without aura[5, 10]. In particular, Zhang et al. [5]
identified an increased gyrification index in left postcentral
gyrus, superior parietal lobule and right lateral occipital
cortex, and a decreased gyrification index in the left rostral
middle frontal gyrus compared with controls, while no dif-
ferences have been identified by Masson et al. [10]. More-
over, Rieder et al. [34] investigated cortical alterations in
medication-overuse headache in adults and observed
higher LGI in two clusters extending respectively from the
fusiform gyrus to adjacent medial temporal regions and in
the occipital pole, this last being a good predictor for poor
response after detoxification. On the other hand, Lai et al.
[35] did not find significant differences between patients
affected by chronic migraine and controls. These results,
particularly from the study of Rieder et al. [34], may sug-
gest a neurodevelopmental component to migraine dis-
ease chronicization or genetic predisposition to a more
severe disease type.

Patients vs. healthy controls
We found a decreased gyrification index in the left su-
perior parietal lobule and in the left inferior parietal lob-
ule, particularly in the supramarginal gyrus, of patients
compared to healthy controls.
The superior and the inferior parietal lobule are in-

cluded in the [36]executive control network, which
mainly involves fronto-striatal-parietal brain regions. Ex-
ecutive functions represent a complex subgroup of cog-
nitive functions, which ensure a finalized behavior in
multiple-choice contexts [36–38]. In particular, the su-
perior parietal lobule has a pivotal role in task-switching,
set-shifting and in the integration of information [39],
while the inferior parietal lobule monitors selective at-
tention [36]. The finding of a decreased gyrification

index in the superior and inferior parietal lobule could
explain the executive function deficits found in migraine
patients during both ictal and interictal phases [37].
The superior and the inferior parietal lobule play a key

role in the nociceptive pathway, particularly, the primary
and secondary somatosensory cortices form the lateral
pain system. Also, they add sensory-discrimination prop-
erties to pain processing by encoding location, intensity,
and quality of pain [40–42]. This information is projected
to the posterior parietal cortex which provides modulatory
influences and conveys nociceptive information to wide-
spread cortical brain regions [3, 42, 43]. The supramargi-
nal gyrus is specifically involved in the cognitive
evaluation of pain [44, 45] and a reduced pain-related ac-
tivity of the supramarginal gyrus has been reported in
headache patients with medication overuse [46].
The presented results confirm the longitudinal study

of Liu.et al. [3], which assessed GM changes at baseline
and after a follow-up of 1 year, showing decreased GM
in the superior parietal gyrus, inferior parietal gyrus and
supramarginal gyrus of migraine patients at follow-up.
Structural changes in inferior parietal lobule and supra-
marginal gyrus match functional abnormalities identified
in chronic migraine patients in a fMRI study by Chiap-
parini et al. [42] and functional alterations and abnormal
connectivity identified between these areas and the
hypothalamus in an fMRI study on cluster-headache by
Ferraro et al. [46]. In particular, Chiapparini et al. tested
brain areas activation during mechanical painful stimuli
administration in chronic migraine patients and demon-
strated significant activations in the inferior parietal cor-
tex and in the supramarginal gyrus and reduced pain-
related activity in the lateral pain pathway of patients
with headache medication overuse [42].
These findings may suggest a role for these brain re-

gions in migraine pain processing. In particular, an ab-
normal gyrification index in the superior and inferior
parietal lobules may alter patients’ pain sensory-
discrimination abilities and the complex modulatory
mechanism taking part in pain processing, possibly dis-
rupting the cognitive evaluation of pain.

Female migraine vs. male migraine
We found significantly decreased gyrification index in
the right superior, middle and transverse temporal gyri,
in the right postcentral gyrus and in the right supramar-
ginal gyrus of females compared to male patients.
The search for a “sex specific phenotype” [47] of mi-

graine is justified by the increased prevalence of mi-
graine in females over 12 years [48, 49], differences in
clinical symptoms and migraine presentation between
the sexes [50, 51], the potential role of female hormones
in migraine onset [52] and response to treatment [53].
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Recent literature suggested that female and male mi-
graine may be different in relation to specific functional
and structural brain abnormalities compared to controls
[6, 47, 54–56].
As already discussed above, postcentral and supramargi-

nal gyri are included in the nociceptive pathway. Previous
studies investigating gray matter cortical thickness showed
that females present an increased cortical thickness in
areas associated with nociception, including the somato-
sensory cortex [54]. In particular, somatosensory cortical
thickness has been demonstrated to be negatively corre-
lated with response to migraine medications [55].
Although the role of the temporal lobes in pain process-

ing is not completely understood and few studies are avail-
able in literature regarding temporal lobe abnormalities in
migraine [57, 58], these areas are supposed to assign emo-
tional valence to short-term memories related to painful
experiences [59]. In particular, the superior temporal
gyrus is involved in pain processing by supervising the
mismatch between pain expectation and pain perception
[60], pain anticipation [61], and pain expression [62]. In a
fMRI study, Schwedt et al. [1] showed atypical connectiv-
ity between the middle temporal gyrus and widespread
subcortical and cortical areas in migraine patients, pos-
sibly reflecting abnormal pain processing.
Our results confirm the hypothesis presented by Webb

et al. [6], who suggested that structural abnormalities in-
dicate the importance of sex in migraine.
Superior temporal gyrus and Heschl’s gyrus, in par-

ticular Broadman areas 41–42 and partially 22, form the
primary auditory cortex [63, 64]. An increased volume
of these gyri, as described by Aldemir et al. [57], may
partially explain patient deficits in auditory stimuli pro-
cessing, characterized by hypersensitivity and aversion to
sound during migraine attacks, the onset of migraine at-
tacks with auditory triggers, and the atypical sensory
perception during the interictal phase [65, 66].
Differences in the gyrification index of the auditory

cortex may justify different clinical presentations be-
tween male and female patients and why male patients
with migraine more frequently present phonophobia
compared to female ones [48, 50].

Cortical Thickness
CT undergoes dynamic changes through life in rela-
tion to normal development and diseases [11, 32, 33].
Since CT displays some variability due to physiologic
and pathologic processes, changes induced by mi-
graine appear realistic. Although cortical thickness in
adult [14, 36, 47] and pediatric [11, 58] migraine pa-
tients has been widely investigated, no “reliable brain
morphological signature for migraine” [67] has been
demonstrated so far.

< 12-year-old Patients vs. ≥ 12-year-old Patients with
migraine
We found cortical thickness to be significantly reduced in
migraine patients ≥ 12 years compared to those < 12 years
in: superior and middle frontal gyri, pre- and post-central
cortex, paracentral lobule, superior and transverse tem-
poral gyri, supramarginal gyrus and posterior insula.
Pediatric patients were divided in two subgroups in re-

lation to age, since migraine prevalence of both sexes is
almost equal up to age 12 and there are no sex-related
differences, while after age 12 there is a significant fe-
male predominance, which progressively increases with
age [68, 69].
A decreased cortical thickness in patients ≥ 12 years may

be justified by the older age and the longer duration of the
disease compared to < 12-years-old patients. This evidence is
coherent with the inverse correlation [70, 71]between cortical
thickness and age in migraine patients .
The finding of reduced cortical thickness of both

frontal lobes in migraine patients is supported by several
studies conducted on children [11, 13, 58] and adults
[14, 36, 72, 73]. As discussed above, this finding can be
related to deficits in the executive control network dur-
ing both ictal and interictal phases [37].
A decreased cortical thickness in the precentral, post-

central and supramarginal gyri confirms prior results ob-
tained in studies conducted on adult migraine patients
[3, 14, 71, 74]. In particular, these cortical areas cooper-
ate in pain processing by modulating the cognitive di-
mension of pain and by encoding the expected painful
stimulus in relation to spatial location, intensity and
quality of pain [14, 40–42, 75, 76]. The result obtained
in the postcentral gyrus is supported by previous studies
that show loss of volume and thinning of the cortex in
patients with chronic pain of non-migraine origin [77,
78]. On the other hand, the superior temporal gyrus is
involved in pain processing by supervising the mismatch
between pain expectation and pain perception [60], and
by regulating pain anticipation [61] and expression [62].
It has been suggested that frontal cortex reduction of

cortical thickness is associated with the reorganization of
the nociceptive network in relation to pain processing of
migraine [14, 58, 73]. However, the temporal relation be-
tween migraine and cortical reduction of cortical thick-
ness is not yet clear [6].
The identification of a thinner cortex in the superior

and transverse temporal gyri may reflect the aforemen-
tioned deficits in auditory stimuli processing which are
mostly appreciable during migraine attacks, but may or
could persist in the interictal phase [65, 66].
The finding of a reduced cortical thickness in the pos-

terior insula confirms prior literature. The pivotal role of
insula in migraine and in the nociceptive network led to
defining[80] insula as a “hub of activity” in migraine [79].
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The insula represents a “multidimensional integration
site for pain” since the nociceptive input received from
the trigeminovascular pathway via the thalamus is first
processed in the posterior insula, which encodes the in-
tensity of pain [71, 81–84] and its anatomical location.
From the posterior insula, the nociceptive input is con-
veyed to the anterior insula, which assigns emotional sig-
nificance to the painful stimulus [79]. fMRI and PET
studies have demonstrated posterior insula contribution
to the sensory-discriminative aspects of pain processing
[85–89], as it presents strong connectivity with the pre-
motor, sensorimotor and supplementary motor areas
and with the middle-posterior cingulate cortex [79, 90].
The posterior insula is also involved in interoceptive

awareness, related to the internal state of migraine pa-
tients, which changes between the ictal and interictal
phase [79, 91].
The finding of thinner insular cortex in patients ≥ 12

years is supported by connectivity studies, as well as the
evidence of structural-functional alterations in the pain
processing network with aging. In particular, Dennis
et al. [92] showed modifications in fiber density between
the insula and various cortical regions from 12 to 30
years of age, while Ceko et al. [93] demonstrated a func-
tional shift in insular connectivity in chronic pain states
from being adaptive in < 12-year-old patients to being
maladaptive in ≥ 12-year-old ones. Insular changes with
aging result in structural and functional alterations in
pain processing [79, 94].
Accordingly, decreased cortical thickness of the pos-

terior insula may reflect a structural-functional imbal-
ance of brain homeostasis and may cause an altered
perception and processing of pain [72, 95].
Insular involvement in migraine pathophysiology and

the evidence of insular structural and functional alter-
ations may pave the way to new and non-invasive treat-
ment approaches in pediatric migraine. Particularly,
aerobic exercise [96], stress limitation, maintenance of
good hydration [97], optimal sleep hygiene [79], cogni-
tive behavioral therapy along with pharmacotherapy
have been proved extremely successful in migraine pa-
tients [79].
The importance of a tailored therapy roots in crucial

differences between pediatric and adult migraine, as
demonstrated by failure of standard adult treatment in
the pediatric population [6, 98].

Patients with nausea and/or vomiting vs. patients without
nausea and/or vomiting
Interestingly, patients experiencing nausea and/or vomit-
ing during headache attacks showed increased cortical
thickness in the left pars opercularis of the inferior
frontal gyrus. The frontal operculum together with the
insula represents the gustatory cortex, which is the

cortical area dedicated to perceiving and distinguishing
tastes [99]. Few studies identified abnormalities in cor-
tical thickness of pars opercularis in patients affected by
migraine and no paper has correlated changes in this
area with migraine symptoms such as nausea or vomit-
ing. In particular, Planchuelo-Gomez et al. [100] identi-
fied a significant negative correlation between attack
duration in episodic migraine patients and gray matter
volume in the right pars opercularis, while Hougaard
et al. made a between-hemisphere comparison in mi-
graine patients and identified an increased cortical thick-
ness in the pars opercularis contralateral to the
perceived headache side.
Harriott et al. [65] suggested that migraine patients ex-

periment altered perception of painful and non-painful
stimuli during ictal and interictal phases (unimodal spe-
cial sensory processing in migraine patients) and present
an abnormal integration of information from simultan-
eous and different sensory inputs (multisensory process-
ing and integration).
Increased cortical thickness in the pars opercularis

may reflect altered perception of stimuli and altered in-
tegration of information, leading to the experience of
nausea and vomiting during migraine attacks.
Future longitudinal studies on larger cohorts are

needed to confirm the presented results.

Limitations
The main limitation of our study is the retrospective de-
sign, which required us to select the study population
from our Institution archive, including patients whose
medical evaluation required a neuroimaging examin-
ation. To mitigate this limitation, we applied strict inclu-
sion and exclusion criteria for patients and controls and
interviewed and visited every subject before inclusion in
the current study. Patients were not checked for anxiety
or mood disorder symptoms with recognized standard
scales. To limit this caveat, patients and families were
interviewed to exclude physical and psychiatric comor-
bidities and sleep disorders.

Conclusions
The evidence of differences in cortical thickness and local
gyrification index in patients compared to controls suggests
that migraine is a complex pathology, possibly related to con-
genital and acquired brain abnormalities. In particular, ≥ 12-
year-old pediatric patients showed decreased cortical thick-
ness in areas related to executive functions and nociceptive
networks compared to < 12-year-old patients, similar to what
described in adult patients. Female patients compared to
males showed decreased cortical thickness of the auditory
cortex, which may justify the increased prevalence of phono-
phobia in males. Therefore, therapies should differ among
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patients depending on migraine features and individual
characteristics.
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