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Abstract 

Amyotrophic Lateral Sclerosis (ALS) is a progressive neurodegenerative 

disease  characterized by degeneration of both upper and lower motor 

neuron located in the spinal cord and brainstem. Diagnosis of ALS is 

predominantly clinical, nevertheless, electromyography and Magnetic 

Resonance Imaging (MRI) may provide support. Several advanced MRI 

techniques have been proven useful for ALS diagnosis and, indeed, the 

combination of different MRI techniques demonstrated an improvement in 

sensitivity and specificity as far as 90%. This review focus on the imaging 

techniques currently used in the diagnosis and management of ALS with 

brief considerations on future applications. 
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Introduction 

 Amyotrophic Lateral Sclerosis (ALS) is a progressive 

neurodegenerative disease that was firstly described by Jean-Martin 

Charcot (Kumar et al. 2011). It is characterized by degeneration of both 

upper (UMN) and lower (LMN) motor neuron located in the spinal cord 

and brainstem (Gordon 1995). Currently, diagnosis of ALS is 

predominantly based on clinical presentation, progression of symptoms, 

and exclusion of other diseases. However, electromyography and Magnetic 

Resonance Imaging (MRI) may support the clinical diagnosis (Andersen et 
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al. 2012). Although this diagnostic pathway, when made by an experienced 

clinician, has been proved to be accurate in nearly 95% of patients, it is 

mandatory to develop early biomarkers in order to facilitate the diagnosis, 

characterize phenotype and monitor the disease progression (Bowser, 

Turner, and Shefner 2011; Rowland, Mitsumoto, and Przedborski 2010; 

Turner et al. 2009). 

MRI has been used to detect cerebral signal intensity changes, such 

as hyperintensity on T2-weighted images (Comi, Rovaris, and Leocani 

1999). Although it is true that hyperintense signal along corticospinal tract 

(CST) extending from the corona radiata to the brainstem is considered 

the best diagnostic clue for ALS, this finding can be seen in healthy control 

as well as in other diseases (Caiazzo et al. 2014; Gordon 1995; Ngai et al. 

2007). Moreover, several advanced techniques have been proved useful, 

indeed the combination of different MRI techniques demonstrated an 

improvement in sensitivity and specificity as far as 90% (Filippini et al. 

2010). In spite of these advantages, current guidelines about the 

management of ALS advocated the use of MRI simply as a tool to exclude 

mimic lesions (mostly spinal) (Brooks et al. 2000; Filippi et al. 2010; 

Ludolph et al. 2015). 

 This review will focus on the imaging techniques currently used in 

the diagnosis and management of ALS with brief considerations on future 

applications. 
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Conventional MRI  

The guidelines provided by the World Federation of Neurology 

Research Group on MNDs and the European Federation of Neurological 

Societies guidelines on neuroimaging of motor neuron diseases (MNDs) 

suggest the use of conventional MRI to exclude so-called mimic  

syndromes which may cause UMN and/or LMN signs (Brooks et al. 2000; 

Filippi et al. 2010; Ludolph et al. 2015). 

The best diagnostic clue and most frequent signal changes found in 

patients with MND is the bilateral hyperintensities along the corticospinal 

tract (CST) extending from the corona radiata to the brainstem (figure 1), 

visualized on T2-weighted images, proton density-weighted images (PD), 

and fluid-attenuated inversion recovery images (FLAIR) (Abe et al. 1997; 

Bede et al. 2014; Hecht et al. 2001, 2002). This finding can be better 

appreciated on coronal images following the pyramidal tract downward to 

the ventral portion of the brainstem and upward to the corona radiata.  

Although there is a wide consensus on the presence of this signal change, 

some researchers suggest that it is better demonstrated on FLAIR whilst 

other deem more reliable T2-WI and PD-WI (Hecht et al. 2001; Hofmann et 

al. 1998; Peretti-Viton et al. 1999). However, hyperintense signal in CST is 

not specific for ALS, non quantifiable and often not correlated to clinical 

signs or disease severity (Winhammar et al. 2005). Healthy individuals 

and patients that underwent liver transplant showed the same finding; 
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therefore CST hyperintensities are neither sensitive nor specific (Ngai et 

al. 2007; Turner 2005). 

Cortical atrophy of the frontal lobe, predominantly in the precentral 

gyrus, has been reported as a common finding in patients with longer 

disease duration (Comi et al. 1999). Nevertheless atrophy is not 

consistently detectable on standard MRI and advanced technique can 

improve its detection (Bowser et al. 2011). Lastly, using conventional 

imaging it is possible to detect a low signal intensity (hypointense rim) on 

T2-WI or Gradient-Echo sequences of the pre-central cortex and, 

specifically, in the primary motor cortex (Hecht et al. 2001; Hofmann et al. 

1998). This ribbon-like hypointensity (figure 2) have been recently 

confirmed using susceptibility-weighted imaging (SWI), quantitative 

susceptibility mapping (QSM) and 7T scanner (Adachi et al. 2014; Kwan et 

al. 2012; Prell et al. 2015; Schweitzer et al. 2013). However, it is not 

specific, can be due to iron and heavy metals accumulation in cortex of 

aged patients and it is rarely found in daily routine (Ngai et al. 2007; Oba 

et al. 1993). 

 

Diffusion Weighted Imaging (DWI) and Diffusion Tensor Imaging (DTI) 

Diffusion based techniques have a crescent role in diagnosis and 

management of ALS. DWI may demonstrate a hyperintensity in the CST 

that can be seen prior to the signal changes in T2WI, moreover the 

degeneration of white-matter fibres results in significant changes in DTI 
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(Bowser et al. 2011; Filippi et al. 2010; Kassubek, Ludolph, and Muller 

2012; Pradat and El Mendili 2014; Turner et al. 2011). Indeed, in white 

matter, the diffusion of water molecules occurs preferentially along the 

axis of orientation of the fibre bundles while and in damaged tracts, 

molecules water are more freely diffusible generating signal changes in 

DWI and DTI. Fractional anisotropy (FA) is a value that describes the 

degree of anisotropy of diffusion and it has values comprised between 

zero and one with the former expressing an isotropic diffusion and the 

latter a restriction in all directions. In 1999 Ellis et al. demonstrated a 

significant decrease in FA in the corticospinal tract (figure 3) (Ellis et al. 

1999). Since then, several authors confirmed this finding (Li et al. 2012; 

Sach et al. 2004; Turner et al. 2009; Valsasina et al. 2007). Moreover, 

recently, Filippini et al. demonstrated a decrease in FA also in the corpus 

callosum (CC) suggesting the use of this finding as a biomarker for ALS 

(Filippini et al. 2010). Indeed degeneration of corpus callosum has been 

associated with different pattern of motor neuron diseases (MNDs) and 

disease progression (Müller et al. 2009; Riad, Hathout, and Huang 2011; 

Unrath et al. 2010; Unrath, Ludolph, and Kassubek 2011; Valsasina et al. 

2007). 

 

Structural analysis 

Focal brain atrophy is a key feature of ALS, thus structural MRI has 

been used to detect and quantify that atrophy. High-resolution T1-WI is 
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acquired using a 1-mm resolution in each direction (figure 4) and can be 

analysed using two different approaches: voxel-based morphometry 

(VBM) and surface-based morphometry (SBM). The former analyses grey 

and white matter volumes in specific brain region whist the latter 

measures cortical thickness (Ashburner and Friston 2000; Das et al. 2009; 

Fischl and Dale 2000). 

Although results were inconsistent, several studies showed volume 

changes in CST, primary motor cortex and frontotemporal cortices using 

VBM analysis (Agosta et al. 2007; Chang et al. 2005; Chiò et al. 2014; 

Kassubek et al. 2005; Turner et al. 2007). Interestingly, atrophy in the 

right precentral gyrus has been consistently associated with ALS and has 

been proposed as a landmark of disease (Chen and Ma 2010). Following 

the introduction of SBM analysis, that is more reliable, the reduction in 

cortical thickness in the motor cortex has been consistently proved and it 

has also been correlated with disease progression (Agosta et al. 2009, 

2012; Roccatagliata et al. 2009; Verstraete et al. 2012). Structural 

evaluation of CC have revealed no differences between ALS patients and 

controls, thus suggesting that there is not a morphological involvement of 

CC (Chapman et al. 2012; Foerster, Welsh, and Feldman 2013). 

 

Magnetic Resonance Spectroscopy 

Magnetic resonance spectroscopy (MRS) is a technique that 

measures the neurochemical profile within a region of interest. MRS of the 
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brain evaluates the presence and quantity of a metabolite called N-

acetylaspartate (NAA), which is a marker of neuron integrity, and its ratio 

to choline (NAA:Cho) or creatine (NAA:Cr) as markers of neuronal 

integrity.  In 1994 a study published by Pioro and colleagues 

demonstrated that there is a significant decrease in NAA:Cr in patients 

with MND in the primary motor cortex (Pioro et al. 1994). Since then, 

many studies confirmed the decrease in values of NAA, NAA:Cho and 

NAA:Cr in the motor cortex and in the CST suggesting a reduced neuronal 

integrity in that areas (Pohl et al. 2001; Sarchielli et al. 2001; Suhy et al. 

2002). Similar changes have been pointed out in the pons and the medulla 

of patients with ALS (Anon n.d.; Cwik et al. 1998). 

Albeit several authors have consistently reported these findings, 

their role in the diagnosis of ALS is limited because there is a significant 

overlap with healthy controls (Gredal et al. 1997; Pioro et al. 1994; Pradat 

and El Mendili 2014). The use of higher magnetic strengths, such as 3-T, 

can improve the diagnosis of ALS. At higher field there is a greater 

metabolite spatial resolution that permits a better separation of 

metabolite signals and might improve their quantification. One of this 

metabolite that can be identified in the cortex using 3-T magnets is GABA 

(Bowser et al. 2011; Zhu et al. 2011). GABA can be used as a surrogate 

marker of excitotoxicity, which has been proved to play a role in 

pathogenesis of ASL (Foerster et al. 2012; Foerster, Pomper, et al. 2013). 

Indeed several studies demonstrated a decrease in levels of GABA in the 
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motor cortex of ALS patients compared with controls (Foerster et al. 2012; 

Zhu et al. 2011). 

In order to corroborate these promising results, multicentre studies 

should be conducted thus to confirm the potential role of MRS in diagnosis 

and treatment monitoring of ALS.  Nevertheless, MRS is a highly operator-

dependent technique, especially at higher fields, with, basically, no 

standardisation in both acquisition and postprocessing; therefore 

multicentre studies have significant barriers (Bowser et al. 2011). 

 

Functional MRI 

Functional MRI is a rapidly accessible, non-invasive, and radiation-

free technique that allows the assessment of brain functioning through the 

differential magnetic properties of oxygenated and deoxygenated 

haemoglobin. The technique most often used is called Blood Oxygenation 

Level-Dependent (BOLD) and, since its introduction in early nineties, its 

applications in clinical and research settings are constantly increased.  

Brain activation studies in ALS patients demonstrated a significant 

decrease in regional patterns of activation during a motor task paired with 

activation in other unrelated regions when compared to control groups 

(figure 5) (Konrad et al. 2002; Tessitore et al. 2006). This finding supports 

the contrasting hypothesis of cortical reorganization or functional 

adaptation due to peripheral weakness (Konrad et al. 2002; Schoenfeld et 

al. 2005). Moreover, an increase in regional activation was reported during 
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motor imagery with a further increase during follow-up matching the 

physical impairment (Lulé et al. 2007). A subsequent study using a simple 

hand motor task corroborated the prognostic implications of brain 

functional rearrangement in ALS (Poujois et al. 2013). 

Resting-state fMRI (rs-MRI) has the potential to limit the bias due to 

physical impairment being independent from motor task (Agosta et al. 

2011; Greicius et al. 2004). Several studies conducted using rs-MRI 

demonstrated wide reorganisation of cerebral networks that correlate 

with the changes detected with BOLD technique (Agosta et al. 2011, 2013; 

Douaud et al. 2011; Jelsone-Swain et al. 2010; Verstraete et al. 2010). 

Other researchers demonstrated a significant decrease of functional 

connectivity within the sensorimotor network and in brain networks 

related to cognition and behaviour supporting the idea of a diffuse disease 

more than a strictly localized alteration (Douaud et al. 2011; Fekete et al. 

2013; Jelsone-Swain et al. 2010; Luo et al. 2012; Mohammadi et al. 2009; 

Tedeschi et al. 2012; Zhou et al. 2013). 

According to the EFNS guidelines, fMRI is recommended in the 

assessment of cognitive network abnormalities in patients with MND 

(Filippi et al. 2010). However, recent studies have underlined the potential 

usefulness of task-free fMRI to detect functional changes on a broader 

scale, which can further exploit the network or system failure  model of 

ALS pathogenesis (Kassubek et al. 2012; Turner et al. 2011). 
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Spinal Cord Imaging 

 Spinal cord imaging can constitute a major breakthrough in ASL 

imaging because it investigates both the upper and lower motor neuron. 

Despite limits such as the small size of the cord, motion and chemical-shift 

artefacts, and geometric distortion DIT and MRS have both demonstrated 

changes in spinal cord that are consistent with those experienced in the 

brain (figure 6).  

DTI confirmed the reduction of FA and the increase of radial 

diffusivity, especially in the cervical spinal cord (El Mendili et al. 2014; 

Valsasina et al. 2007). Moreover, Cohen et al. demonstrated that focal 

atrophy correlates with functional impairment and the combination of 

focal FA reductions and increase in radial diffusivity are also present in the 

dorsal cord columns, confirming the involvement of the sensory pathways 

(Cohen-Adad et al. 2013). Lastly, analysis of spinal cord DTI parameters 

could allow a further insight of ALS  physiopathology; indeed it can 

confirm the involvement of sensory pathway and clarify which one of the 

dying-back and the dying-forward theories is the correct one (Cohen-Adad 

et al. 2013). 

Similarly to DTI, MRS studies were performed at cervical cord level 

to overcome the limitations stated above. Several studies demonstrated a 

significant decrease in NAA:Cr and NAA:myo-inositol in patients with ALS 

(John D Carew et al. 2011; Ikeda et al. 2013). Interestingly these findings 
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have been reported also in presymptomatic patients with SOD1 mutations 

(J D Carew et al. 2011). 

 

Frontotemporal Dementia and Amyotrophic Lateral Sclerosis 

Frontotemporal Dementia (FTD) is a neurodegenerative disorder 

which affects primarily in the frontal lobes and in the anterior portions of 

the temporal lobes (Hodges et al. 2004). ALS and FTD are both 

multisystem neurodegenerative diseases and, according to their frequent 

association, they have been advocated as the two poles of a disease 

spectrum (Clark and Forman 2006; Neumann et al. 2006). Indeed, they 

share clinical, genetic and pathogenetic characteristics confirming their 

nature as a continuum disease with different symptoms prevalence (Ling, 

Polymenidou, and Cleveland 2013; Murphy et al. 2007). Moreover, 

patients with ALS could demonstrate cognitive impairment whilst patients 

with FTD could experience MND symptoms (Lomen-Hoerth, Anderson, 

and Miller 2002; Ringholz et al. 2005). 

Several studies have demonstrated common changes in ALS and 

FTD in the frontal and temporal lobes (Cirillo et al. 2012; d Ambrosio et al. 

2014; Lillo et al. 2012). More recently, common changes have been 

demonstrated using rs-MRI in the sensorimotor domain and, less frankly, 

in the connectivity pattern (Trojsi et al. 2014). The latter finding 

confirmed the theory that these two diseases should be considered as 

different expression of the same neurodegenerative process.  
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Summary 

MRI constitutes a useful non-invasive tool in the assessment of ALS. 

Currently, its greatest role is to exclude the presence of a mimic disorder 

rather than diagnose a patient with ALS. Moreover, MRI has given a deeper 

insight into the pathophysiology of MND and has clarified the multisystem 

nature of this disease. The development of advanced techniques in the past 

few years lead to further application of MRI in the management of ALS. 

Indeed MRI has been proposed as a biomarker for diagnosis, progression 

and prognosis.  

In conclusion, MRI has a greater potential to aid in terms of increase 

the characterization of patients with ALS improving in the meantime our 

understanding of this disease, monitoring its progression and predicting 

its prognosis. However, further prospective studies are needed with larger 

cohorts and a multicentre approach.  
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Captions: 

Figure 1: MRI of patients with clinically diagnosed amyotrophic lateral 

sclerosis (ALS). In both patients axial T2WI (A and C) and coronal FLAIR 

(B and D) demonstrate T2 hyperintensity along the corticospinal tract. A 

and B: 71 years old man; C and D: 65 years old female. 

Figure 2: Gradient-Echo sequence (A and B) and Susceptibility-Weighted 

sequence (C and D) obtained in a patient with clinically diagnosed 

amyotrophic lateral sclerosis (ALS). 

Figure 3: DTI obtained in a patient with clinically diagnosed amyotrophic 

lateral sclerosis (ALS). Color-coded fractional anisotropy (A and B) and 

tractography color-coded maps (C). Images demonstrated a slight 

decrease in FA in the right corticospinal tract consistent with patient s 

symptoms. 

Figure 4: 3D-SPGR T1WI obtained in a patient with clinically diagnosed 

amyotrophic lateral sclerosis (ALS). Axial projection (A), coronal 

projection (B) and sagittal projection (C).  

Figure 5: fMRI obtained in a patient with clinically diagnosed amyotrophic 

lateral sclerosis (ALS). Images were acquired during the execution of a 

finger tapping  task. There is a significant cortical activity in the ipsi- and 

contralateral sensorimotor cortex, supplementary motor area and in the 

basal ganglia. 
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Figure 6: Spinal MRI of a male patient with clinically diagnosed 

amyotrophic lateral sclerosis (ALS). Axial T2WI (A) and Sagittal STIR (B) 

do not demonstrate signal changes related to ALS. 

 


