113 research outputs found

    Nitric oxide, cytochrome c oxidase and myoglobin: Competition and reaction pathways

    Get PDF
    AbstractIt is relevant to cell physiology that nitric oxide (NO) reacts with both cytochrome oxidase (CcOX) and oxygenated myoglobin (MbO2). In this respect, it has been proposed [Pearce, L.L., et al. (2002) J. Biol. Chem. 277, 13556–13562] that (i) CcOX in turnover out-competes MbO2 for NO, and (ii) NO bound to reduced CcOX is “metabolized” in the active site to nitrite by reacting with O2. In contrast, rapid kinetics experiments reported in this study show that (i) upon mixing NO with MbO2 and CcOX in turnover, MbO2 out-competes the oxidase for NO and (ii) after mixing nitrosylated CcOX with O2 in the presence of MbO2, NO (and not nitrite) dissociates from the enzyme causing myoglobin oxidation

    Nitrosative stress defences of the enterohepatic pathogenic bacterium Helicobacter pullorum

    Get PDF
    Helicobacter pullorum is an avian bacterium that causes gastroenteritis, intestinal bowel and hepatobiliary diseases in humans. Although H. pullorum has been shown to activate the mammalian innate immunity with release of nitric oxide (NO), the proteins that afford protection against NO and reactive nitrogen species (RNS) remain unknown. Here several protein candidates of H. pullorum, namely a truncated (TrHb) and a single domain haemoglobin (SdHb), and three peroxiredoxin-like proteins (Prx1, Prx2 and Prx3) were investigated. We report that the two haemoglobin genes are induced by RNS, and that SdHb confers resistance to nitrosative stress both in vitro and in macrophages. For peroxiredoxins, the prx2 and prx3 expression is enhanced by peroxynitrite and hydrogen peroxide, respectively. Mutation of prx1 does not alter the resistance to these stresses, while the single ∆prx2 and double ∆prx1∆prx2 mutants have decreased viability. To corroborate the physiological data, the biochemical analysis of the five recombinant enzymes was done, namely by stopped-flow spectrophotometry. It is shown that H. pullorum SdHb reacts with NO much more quickly than TrHb, and that the three Prxs react promptly with peroxynitrite, Prx3 displaying the highest reactivity. Altogether, the results unveil SdHb and Prx3 as major protective systems of H. pullorum against nitrosative stress

    Lymph node fine needle cytology, Epstein Barr virus infection and Hodgkin Lymphoma

    Get PDF
    Epstein-Barr virus (EBV) is a double-strand DNA virus of the herpes family; it is one of the most common human viruses and it is associated with a wide spectrum of benign and malignant conditions. EBV is related to the development of several neoplasms, globally 1% of tumours, including lymphoproliferative, epithelial and mesenchymal neoplasm. Lymphoproliferative disorders include Hodgkin lymphoma (HL) and B and T cell non-Hodgkin lymphoma. HL is one of the most common lymphoma in the developed world, affecting both young people and adults. HL pathogenesis is complex and includes various and partially unknown mechanisms. EBV has been detected in some HL neoplastic cells and expresses genes with a potential oncogenic function, therefore many studies suggest that viral infections have a causative role in neoplastic transformation. Fine Needle Cytology (FNC) is extensively used in the first diagnosis of any lymph-nodal enlargement, including reactive lymphadeno - pathies and lymphoproliferative processes; therefore cytopathologists are likely to encounter EBVassociated malignancies in cytology samples, mainly HL, which is one of the most common lymphoma. This study focuses on the cytological features and ancillary studies required to diagnose EBV-related HL

    Cytochrome bd oxidase and nitric oxide: from reaction mechanisms to bacterial physiology.

    Get PDF
    International audience; Experimental evidence suggests that the prokaryotic respiratory cytochrome bd quinol oxidase is responsible for both bioenergetic functions and bacterial adaptation to different stress conditions. The enzyme, phylogenetically unrelated to the extensively studied heme-copper terminal oxidases, is found in many commensal and pathogenic bacteria. Here, we review current knowledge on the catalytic intermediates of cytochrome bd and their reactivity towards nitric oxide (NO). Available information is discussed in the light of the hypothesis that, owing to its high NO dissociation rate, cytochrome bd confers resistance to NO-stress, thereby providing a strategy for bacterial pathogens to evade the NO-mediated host immune attack

    N-acetylcysteine serves as substrate of 3-mercaptopyruvate sulfurtransferase and stimulates sulfide metabolism in colon cancer cells

    Get PDF
    Hydrogen sulfide (H2S) is an endogenously produced signaling molecule. The enzymes 3-mercaptopyruvate sulfurtransferase (MST), partly localized in mitochondria, and the inner mitochondrial membrane-associated sulfide:quinone oxidoreductase (SQR), besides being respectively involved in the synthesis and catabolism of H2S, generate sulfane sulfur species such as persulfides and polysulfides, currently recognized as mediating some of the H2S biological effects. Reprogramming of H2S metabolism was reported to support cellular proliferation and energy metabolism in cancer cells. As oxidative stress is a cancer hallmark and N-acetylcysteine (NAC) was recently suggested to act as an antioxidant by increasing intracellular levels of sulfane sulfur species, here we evaluated the effect of prolonged exposure to NAC on the H2S metabolism of SW480 colon cancer cells. Cells exposed to NAC for 24 h displayed increased expression and activity of MST and SQR. Furthermore, NAC was shown to: (i) persist at detectable levels inside the cells exposed to the drug for up to 24 h and (ii) sustain H2S synthesis by human MST more effectively than cysteine, as shown working on the isolated recombinant enzyme. We conclude that prolonged exposure of colon cancer cells to NAC stimulates H2S metabolism and that NAC can serve as a substrate for human MST

    Chloride Bound to Oxidized Cytochrome c Oxidase Controls the Reaction with Nitric Oxide

    Get PDF
    The reaction of nitric oxide (NO) with oxidized fast cytochrome c oxidase was investigated by stopped-flow, amperometry, and EPR, using the enzyme as prepared or after "pulsing." A rapid reduction of cytochrome a is observed with the pulsed, but not with the enzyme as prepared. The reactive species (lambdamax = 424 nm) reacts with NO at k = 2.2 x 10(5) M-1 s-1 at 20 degreesC and is stable for hours unless Cl- is added, in which case it decays slowly (t1/2 approximately 70 min) to an unreactive state (lambdamax = 423 nm) similar to the enzyme as prepared. Thus, Cl- binding prevents a rapid reaction of NO with the oxidized binuclear center. EPR experiments show no new signals within 15 s after addition of NO to the enzyme as prepared. Amperometric measurements show that the pulsed NO-reactive enzyme reacts with high affinity and a stoichiometry of 1 NO/aa3, whereas the enzyme as prepared reacts to a very small extent (20%). In both cases, the reactivity is abolished by pre-incubation with cyanide. These experiments suggest that the effect of "pulsing" the enzyme, which leads to enhanced NO reactivity, arises from removing Cl- bound at the oxidized cytochrome a3-CuB site

    Cytochrome bd oxidase from Escherichia coli displays high catalase activity: An additional defense against oxidative stress

    Get PDF
    AbstractCytochrome bd oxygen reductase from Escherichia coli has three hemes, b558, b595 and d. We found that the enzyme, as-prepared or in turnover with O2, rapidly decomposes H2O2 with formation of approximately half a mole of O2 per mole of H2O2. Such catalase activity vanishes upon cytochrome bd reduction, does not compete with the oxygen-reductase activity, is insensitive to NO, CO, antimycin-A and N-ethylmaleimide (NEM), but is inhibited by cyanide (Ki ∼2.5μM) and azide. The activity, possibly associated with heme-b595, was also observed in catalase-deficient E. coli cells following cytochrome bd over-expression suggesting a protective role against oxidative stress in vivo

    The O2-scavenging Flavodiiron Protein in the Human Parasite Giardia intestinalis

    Get PDF
    The flavodiiron proteins (FDP) are widespread among strict or facultative anaerobic prokaryotes, where they are involved in the response to nitrosative and/or oxidative stress. Unexpectedly, FDPs were fairly recently identified in a restricted group of microaerobic protozoa, including Giardia intestinalis, the causative agent of the human infectious disease giardiasis. The FDP from Giardia was expressed, purified, and extensively characterized by x-ray crystallography, stopped-flow spectroscopy, respirometry, and NO amperometry. Contrary to flavorubredoxin, the FDP from Escherichia coli, the enzyme from Giardia has high O(2)-reductase activity (>40 s(-1)), but very low NO-reductase activity (approximately 0.2 s(-1)); O(2) reacts with the reduced protein quite rapidly (milliseconds) and with high affinity (K(m) < or = 2 microM), producing H(2)O. The three-dimensional structure of the oxidized protein determined at 1.9A resolution shows remarkable similarities with prokaryotic FDPs. Consistent with HPLC analysis, the enzyme is a dimer of dimers with FMN and the non-heme di-iron site topologically close at the monomer-monomer interface. Unlike the FDP from Desulfovibrio gigas, the residue His-90 is a ligand of the di-iron site, in contrast with the proposal that ligation of this histidine is crucial for a preferential specificity for NO. We propose that in G. intestinalis the primary function of FDP is to efficiently scavenge O(2), allowing this microaerobic parasite to survive in the human small intestine, thus promoting its pathogenicity

    A Novel Type of Nitric-oxide Reductase ESCHERICHIA COLI FLAVORUBREDOXIN

    Get PDF
    Escherichia coli flavorubredoxin is a member of the family of the A-type flavoproteins, which are built by two core domains: a metallo-β-lactamase-like domain, at the N-terminal region, harboring a non-heme di-iron site, and a flavodoxin-like domain, containing one FMN moiety. The enzyme fromE. coli has an extra module at the C terminus, containing a rubredoxin-like center. The A-type flavoproteins are widespread among strict and facultative anaerobes, as deduced from the analysis of the complete prokaryotic genomes. In this report we showed that the recombinant enzyme purified from E. coli has nitric-oxide reductase activity with a turnover number of ∼15 mol of NO·mol enzyme−1·s−1, which was well within the range of those determined for the canonical hemeb3 -FeB containing nitric-oxide reductases (e.g. ∼10–50 mol NO·mol enzyme−1·s−1 for the Paracoccus denitrificans NOR). Furthermore, it was shown that the activity was due to the A-type flavoprotein core, as the rubredoxin domain alone exhibited no activity. Thus, a novel family of prokaryotic NO reductases, with a non-heme di-iron site as the catalytic center, was established

    Sulfolobus acidocaldarius terminal oxidase. A kinetic investigation and its structural interpretation.

    Get PDF
    Abstract The thermoacidophilic archaebacterium Sulfolobus acidocaldarius possesses a very unusual terminal oxidase. We report original kinetic experiments on membranes of this microorganism carried out by stopped flow, using time-resolved optical spectroscopy combined with singular value decomposition analysis. The reduced-oxidized kinetic difference spectrum of the Sulfolobus membranes is characterized by three significant peaks in the visible region at 605, 586, and 560 nm. The 605-nm peak and part of the 586-nm peak (cytochrome aa3-type quinol oxidase) are reduced synchronously by both ascorbate plus N,N,N',N'-tetramethyl-p-phenylendiamine (TMPD) and dithionite, and they are very rapidly oxidized by molecular oxygen. A second pool of cytochromes seems to contribute to the 586-nm peak which is not reduced by ascorbate plus TMPD and reacts very slowly with dithionite. The b-type cytochromes (560 nm peak) are reduced by both reductants and are essentially "non-autoxidizable" at room temperature. Only one CO binding site with spectral features, kinetic properties, and ligand affinity not very dissimilar from those of mammalian cytochrome oxidase can be detected in the ascorbate-reduced membranes. On the contrary, a second CO binding site having unusual properties for aa3 terminal oxidases can be detected in the dithionite-reduced membranes
    corecore