445 research outputs found
Mind the Gap: Experimental Tests to Improve Efficacy of Fladry for Nonlethal Management of Coyotes
Coyotes (Canis latrans) are the top predator of livestock in the contiguous United States. Developing more effective nonlethal tools to prevent coyote depredation will facilitate coexistence between livestock producers and coyotes. Fladry is a nonlethal deterrent designed to defend livestock by creating a visual barrier to wolves (C. lupus). Fladry may also be effective with coyotes, but large gap spacing between flags may reduce its efficacy. To address this issue, we performed 2 experiments on captive coyotes using fladry modified to reduce gap spacing at the U.S. Department of Agriculture, Predator Research Facility in Millville, Utah, USA, during 2015–2016 and 2017–2018. In 2015–2016, we tested 2 styles for attaching flags (top‐knot and shower‐curtain) to the rope‐line that reduce gaps by preventing coiling of individual flags. In 2017–2018, we tested the efficacy of gap spacing (27.9 cm vs. 45.7 cm) between flags for preventing coyote crossings. For both tests, we compared the time until coyotes crossed the fladry between treatment types. We found no differences in time to crossing between the 2 attachment designs. In our second experiment, fladry with smaller gaps between flags had greater efficacy of preventing coyote crossings than did fladry with larger gaps. Our results also indicated that for each additional minute coyotes spent interacting with fladry overall (i.e., increased persistent behavior), survival of the barrier decreased. These results suggest that persistent coyotes may overcome neophobia more rapidly than coyotes that do not exhibit persistent behaviors. Furthermore, use of top‐knot fladry and coyote‐width spacing will increase protection of livestock from coyotes
The influence of past and present climate on the biogeography of modern mammal diversity
Within most terrestrial groups of animals, including mammals, species richness varies along two axes of environmental variation, representing energy availability and plant productivity. This relationship has led to a search for mechanistic links between climate and diversity. Explanations have traditionally focused on single mechanisms, such as variation in environmental carrying capacity or evolutionary rates. Consensus, though, has proved difficult to achieve and there is growing appreciation that geographical patterns of species richness are a product of many interacting factors including biogeographic history and biological traits. Here, we review some current hypotheses on the causes of gradients in mammal richness and range sizes since the two quantities are intimately linked. We then present novel analyses using recent datasets to explore the structure of the environment–richness relationship for mammals. Specifically, we consider the impact of glaciation on present day mammalian diversity gradients. We conclude that not only are multiple processes important in structuring diversity gradients, but also that different processes predominate in different places
Absence of Dipole Transitions in Vortices of Type II Superconductors
The response of a single vortex to a time dependent field is examined
microscopically and an equation of motion for vortex motion at non-zero
frequencies is derived. Of interest are frequencies near ,
where is the bulk energy gap and is the fermi energy. The low
temperature, clean, extreme type II limit and maintaining of equilibrium with
the lattice are assumed. A simplification occurs for large planar mass
anisotropy. Thus the results may be pertinent to materials such as and
high temperature superconductors. The expected dipole transition between core
states is hidden because of the self consistent nature of the vortex potential.
Instead the vortex itself moves and has a resonance at the frequency of the
transition.Comment: 12 pages, no figure
Crossover from Kondo assisted suppression to co-tunneling enhancement of tunneling magnetoresistance via ferromagnetic nanodots in MgO tunnel barriers
Recently, it has been shown that magnetic tunnel junctions with thin MgO
tunnel barriers exhibit extraordinarily high tunneling magnetoresistance (TMR)
values at room temperature1, 2. However, the physics of spin dependent
tunneling through MgO barriers is only beginning to be unravelled. Using planar
magnetic tunnel junctions in which ultra-thin layers of magnetic metals are
deposited in the middle of a MgO tunnel barrier here we demonstrate that the
TMR is strongly modified when these layers are discontinuous and composed of
small pancake shaped nanodots. At low temperatures, in the Coulomb blockade
regime, for layers less than ~1 nm thick, the conductance of the junction is
increased at low bias consistent with Kondo assisted tunneling. In the same
regime we observe a suppression of the TMR. For slightly thicker layers, and
correspondingly larger nanodots, the TMR is enhanced at low bias, consistent
with co-tunneling.Comment: Nano Letters (in press
Measurement of the Far Infrared Magneto-Conductivity Tensor of Superconducting YBaCuO Thin Films
We report measurements of the far infrared transmission of superconducting
YBaCuO thin films from 5 cm to 200 cm in
fields up to 14. A Kramers-Kronig analysis of the magneto-transmission
spectrum yields the magneto-conductivity tensor. The result shows that the
magneto-conductivity of YBaCuO is dominated by three
terms: a London term, a low frequency Lorentzian ( 3 cm) of width 10 cm and a finite frequency Lorentzian of
width 17 cm at 24 cm in the hole
cyclotron resonance active mode of circular polarization.\\Comment: Revised LaTex file (12 pages) + 4 Postscript figures, uuencoded. In
response to referees' comments, we refined the paper a lot; we encourage you
to download this revised versio
Critical State Flux Penetration and Linear Microwave Vortex Response in YBa_2Cu_3O_{7-x} Films
The vortex contribution to the dc field (H) dependent microwave surface
impedance Z_s = R_s+iX_s of YBa_2Cu_3O_{7-x} thin films was measured using
suspended patterned resonators. Z_s(H) is shown to be a direct measure of the
flux density B(H) enabling a very precise test of models of flux penetration.
Three regimes of field-dependent behavior were observed: (1) Initial flux
penetration occurs on very low field scales H_i(4.2K) 100Oe, (2) At moderate
fields the flux penetration into the virgin state is in excellent agreement
with calculations based upon the field-induced Bean critical state for thin
film geometry, parametrized by a field scale H_s(4.2K) J_c*d 0.5T, (3) for very
high fields H >>H_s, the flux density is uniform and the measurements enable
direct determination of vortex parameters such as pinning force constants
\alpha_p and vortex viscosity \eta. However hysteresis loops are in
disagreement with the thin film Bean model, and instead are governed by the low
field scale H_i, rather than by H_s. Geometric barriers are insufficient to
account for the observed results.Comment: 20 pages, LaTeX type, Uses REVTeX style files, Submitted to Physical
Review B, 600 dpi PostScript file with high resolution figures available at
http://sagar.physics.neu.edu/preprints.htm
The ac magnetic response of mesoscopic type II superconductors
The response of mesoscopic superconductors to an ac magnetic field is
numerically investigated on the basis of the time-dependent Ginzburg-Landau
equations (TDGL). We study the dependence with frequency and dc
magnetic field of the linear ac susceptibility
in square samples with dimensions of the order of the London penetration depth.
At the behavior of as a function of agrees very well
with the two fluid model, and the imaginary part of the ac susceptibility,
, shows a dissipative a maximum at the frequency
. In the presence of a magnetic field a
second dissipation maximum appears at a frequency . The most
interesting behavior of mesoscopic superconductors can be observed in the
curves obtained at a fixed frequency. At a fixed number of
vortices, continuously increases with increasing . We
observe that the dissipation reaches a maximum for magnetic fields right below
the vortex penetration fields. Then, after each vortex penetration event, there
is a sudden suppression of the ac losses, showing discontinuities in
at several values of . We show that these
discontinuities are typical of the mesoscopic scale and disappear in
macroscopic samples, which have a continuos behavior of . We
argue that these discontinuities in are due to the effect of
{\it nascent vortices} which cause a large variation of the amplitude of the
order parameter near the surface before the entrance of vortices.Comment: 12 pages, 9 figures, RevTex
Electrodynamics of a Clean Vortex Lattice
We report on a microscopic evaluation of electrodynamic response for the
vortex lattice state of a model s-wave superconductor. Our calculation accounts
self-consistently for both quasiparticle and order parameter response and
establishes the collective nature of linear response in the clean limit. We
discuss the effects of homogeneous and inhomogeneous pinning on the optical
conductivity and the penetration depth, and comment on the relationship between
macroscopic and local penetration depths. We find unexpected relationships
between pinning arrangements and conductivity due to the strongly non-local
response.Comment: 4 pages, 2 figure
Microscopic theory of vortex dynamics in homogeneous superconductors
Vortex dynamics in fermionic superfluids is carefully considered from the
microscopic point of view. Finite temperatures, as well as impurities, are
explicitly incorporated. To enable readers understand the physical
implications, macroscopic demonstrations based on thermodynamics and
fluctuations- dissipation theorems are constructed. For the first time a clear
summary and a critical review of previous results are given.Comment: Presentations are made more straightforward. A detailed presentation
that why the vortex friction is finite when the geometric phase exists, as
required by referees, though I think it is obviou
- …