257 research outputs found

    Hexagonal Tilings and Locally C6 Graphs

    Full text link
    We give a complete classification of hexagonal tilings and locally C6 graphs, by showing that each of them has a natural embedding in the torus or in the Klein bottle. We also show that locally grid graphs are minors of hexagonal tilings (and by duality of locally C6 graphs) by contraction of a perfect matching and deletion of the resulting parallel edges, in a form suitable for the study of their Tutte uniqueness.Comment: 14 figure

    On the Rational Type 0f Moment Angle Complexes

    Full text link
    In this note it is shown that the moment angle complexes Z(K;(D^2,,S^1)) which are rationally elliptic are a product of odd spheres and a diskComment: This version avoids the use of an incorrect result from the literature in the proof of Theorem 1.3. There is some text overlap with arXiv:1410.645

    Regularity of squarefree monomial ideals

    Full text link
    We survey a number of recent studies of the Castelnuovo-Mumford regularity of squarefree monomial ideals. Our focus is on bounds and exact values for the regularity in terms of combinatorial data from associated simplicial complexes and/or hypergraphs.Comment: 23 pages; survey paper; minor changes in V.

    CRISPR-Cas9 screens in human cells and primary neurons identify modifiers of C9ORF72 dipeptide-repeat-protein toxicity.

    Get PDF
    Hexanucleotide-repeat expansions in the C9ORF72 gene are the most common cause of amyotrophic lateral sclerosis and frontotemporal dementia (c9ALS/FTD). The nucleotide-repeat expansions are translated into dipeptide-repeat (DPR) proteins, which are aggregation prone and may contribute to neurodegeneration. We used the CRISPR-Cas9 system to perform genome-wide gene-knockout screens for suppressors and enhancers of C9ORF72 DPR toxicity in human cells. We validated hits by performing secondary CRISPR-Cas9 screens in primary mouse neurons. We uncovered potent modifiers of DPR toxicity whose gene products function in nucleocytoplasmic transport, the endoplasmic reticulum (ER), proteasome, RNA-processing pathways, and chromatin modification. One modifier, TMX2, modulated the ER-stress signature elicited by C9ORF72 DPRs in neurons and improved survival of human induced motor neurons from patients with C9ORF72 ALS. Together, our results demonstrate the promise of CRISPR-Cas9 screens in defining mechanisms of neurodegenerative diseases

    Symbolic powers of monomial ideals and Cohen-Macaulay vertex-weighted digraphs

    Full text link
    In this paper we study irreducible representations and symbolic Rees algebras of monomial ideals. Then we examine edge ideals associated to vertex-weighted oriented graphs. These are digraphs having no oriented cycles of length two with weights on the vertices. For a monomial ideal with no embedded primes we classify the normality of its symbolic Rees algebra in terms of its primary components. If the primary components of a monomial ideal are normal, we present a simple procedure to compute its symbolic Rees algebra using Hilbert bases, and give necessary and sufficient conditions for the equality between its ordinary and symbolic powers. We give an effective characterization of the Cohen--Macaulay vertex-weighted oriented forests. For edge ideals of transitive weighted oriented graphs we show that Alexander duality holds. It is shown that edge ideals of weighted acyclic tournaments are Cohen--Macaulay and satisfy Alexander dualityComment: Special volume dedicated to Professor Antonio Campillo, Springer, to appea

    The yeast P5 type ATPase, Spf1, regulates manganese transport into the endoplasmic reticulum

    Get PDF
    The endoplasmic reticulum (ER) is a large, multifunctional and essential organelle. Despite intense research, the function of more than a third of ER proteins remains unknown even in the well-studied model organism Saccharomyces cerevisiae. One such protein is Spf1, which is a highly conserved, ER localized, putative P-type ATPase. Deletion of SPF1 causes a wide variety of phenotypes including severe ER stress suggesting that this protein is essential for the normal function of the ER. The closest homologue of Spf1 is the vacuolar P-type ATPase Ypk9 that influences Mn2+ homeostasis. However in vitro reconstitution assays with Spf1 have not yielded insight into its transport specificity. Here we took an in vivo approach to detect the direct and indirect effects of deleting SPF1. We found a specific reduction in the luminal concentration of Mn2+ in ∆spf1 cells and an increase following it’s overexpression. In agreement with the observed loss of luminal Mn2+ we could observe concurrent reduction in many Mn2+-related process in the ER lumen. Conversely, cytosolic Mn2+-dependent processes were increased. Together, these data support a role for Spf1p in Mn2+ transport in the cell. We also demonstrate that the human sequence homologue, ATP13A1, is a functionally conserved orthologue. Since ATP13A1 is highly expressed in developing neuronal tissues and in the brain, this should help in the study of Mn2+-dependent neurological disorders

    Rapid selection of cyclic peptides that reduce alpha-synuclein toxicity in yeast and animal models

    Get PDF
    Phage display has demonstrated the utility of cyclic peptides as general protein ligands but cannot access proteins inside eukaryotic cells. Expanding a new chemical genetics tool, we describe the first expressed library of head-to-tail cyclic peptides in yeast (Saccharomyces cerevisiae). We applied the library to selections in a yeast model of alpha-synuclein toxicity that recapitulates much of the cellular pathology of Parkinson's disease. From a pool of 5 million transformants, we isolated two related cyclic peptide constructs that specifically reduced the toxicity of human alpha-synuclein. These expressed cyclic peptide constructs also prevented dopaminergic neuron loss in an established Caenorhabditis elegans Parkinson's model. This work highlights the speed and efficiency of using libraries of expressed cyclic peptides for forward chemical genetics in cellular models of human disease
    corecore