74 research outputs found

    ILRI Tick Unit: Local research with global impact

    Get PDF

    Report from an ILRI strategy workshop on tick research, Cape Town, 24 August 2014

    Get PDF

    Novel Theileria genotypes from wildlife in a Theileria parva—Endemic area in Kenya

    Get PDF

    Role of climate and other factors in determining the dynamics of tick and tick-transmitted pathogen populations and distribution in western, central and eastern Africa

    Get PDF
    This expert opinion discusses the potential impact of climatic change on vector abundance, survival and transmission of tick-borne pathogens in western, central and eastern Africa. It also discusses the following cases: (1) Rhipicephalus microplus with a focus in West and Central Africa and (2) northern expansion of Rhipicephalus appendiculatus into South Sudan through anthropogenic cattle movement

    Universal tick vaccines : candidates and remaining challenges

    Get PDF
    Recent advancements in molecular biology, particularly regarding massively parallel sequencing technologies, have enabled scientists to gain more insight into the physiology of ticks. While there has been progress in identifying tick proteins and the pathways they are involved in, the specificities of tick-host interaction at the molecular level are not yet fully understood. Indeed, the development of effective commercial tick vaccines has been slower than expected. While omics studies have pointed to some potential vaccine immunogens, selecting suitable antigens for a multiantigenic vaccine is very complex due to the participation of redundant molecules in biological pathways. The expansion of ticks and their pathogens into new territories and exposure to new hosts makes it necessary to evaluate vaccine efficacy in unusual and non-domestic host species. This situation makes ticks and tick-borne diseases an increasing threat to animal and human health globally, demanding an urgent availability of vaccines against multiple tick species and their pathogens. This review discusses the challenges and advancements in the search for universal tick vaccines, including promising new antigen candidates, and indicates future directions in this crucial research field

    Investigating volatile semiochemical production from Bos taurus and Bos indicus as a novel phenotype for breeding host resistance to ixodid ticks

    Get PDF
    Ticks and tick-borne diseases cause significant loss in livestock production with about 80% world's cattle at risk. The cost of chemical control is high and there is an ever-increasing tick resistance to chemical acaricides. Genetic selection as alternative long-term control strategy is constrained by laborious phenotyping using tick counts or scores. This study explored the use of host volatile semiochemicals that may be attractants or repellents to ticks as a phenotype for new tick resistance, with potential to be used as a proxy in selection programmes. Approximately 100 young cattle composed of Bos indicus and Bos taurus were artificially infested with 2,500 African blue tick, Rhipicephalus decoloratus larvae, with daily female tick (4.5 mm) counts taken from day 20 post-infestation. Volatile organic compounds were sampled from cattle before and after tick infestation by dynamic headspace collection, analysed by high-resolution gas chromatography (GC) and subjected to multivariate statistical analysis. Using 6-day repeated measure analysis, three pre-infestation GC peaks (BI938 - unknown, BI966 - 6-methyl-5-hepten-2-one and BI995 – hexyl acetate) and one post-infestation GC peak (AI933 – benzaldehyde / (E)-2-heptenal) were associated with tick resistance (P < 0.01 and P < 0.05 respectively). The high correlation coefficients (r = 0.66) between repeated records with all volatile compounds support the potential predictive value for volatile compounds in selective breeding programmes for tick resistance in cattle

    Effect of essential oils against acaricide‐susceptible and acaricide‑resistant Rhipicephalus ticks

    Get PDF
    The indiscriminate use of acaricides is a problem worldwide and has increased the selection of acaricide-resistant tick populations. The goal of this study was to evaluate the acaricide effects of two essential oils (from Schinus molle and Bulnesia sarmientoi) using the larval immersion test on three Rhipicephalus tick species. Rhipicephalus evertsi, Rhipicephalus appendiculatus and Rhipicephalus pulchelus ticks collected in Kenya, without history of acaricide exposure, were tested, as well as individuals from two populations of Rhipicephalus microplus (with or without history of acaricide exposure), for comparison. The sample most resistant to the treatments was a population of R. microplus with previous acaricide exposure, whereas the least tolerant sample was a strain of the same species that never had contact with acaricides (Porto Alegre strain). Interestingly, the field tick samples without previous acaricide exposure responded to essential oils with a mortality profile resembling that observed in the acaricide-resistant R. microplus field population, and not the susceptible Porto Alegre strain. The essential oil of B. sarmientoi and its two components tested (guaiol and bulnesol) caused the highest mortality rates in the tested species and are potential molecules for future studies on control methods against these species
    corecore