63 research outputs found

    Spectra of distorted quantum ring in external fields

    Get PDF
    The spectra and response of a single electron on a distorted quantum ring have been studied in detail. The distortion in the ring has been taken care by a geometrical factor. We take few different cases of distortion. Role of strength of the distortion along with the external static and laser field on spectrum has been studied

    OsJAZ11 regulates phosphate starvation responses in rice

    Get PDF
    Main conclusion: OsJAZ11 regulates phosphate homeostasis by suppressing jasmonic acid signaling and biosynthesis in rice roots. Abstract: Jasmonic Acid (JA) is a key plant signaling molecule which negatively regulates growth processes including root elongation. JAZ (JASMONATE ZIM-DOMAIN) proteins function as transcriptional repressors of JA signaling. Therefore, targeting JA signaling by deploying JAZ repressors may enhance root length in crops. In this study, we overexpressed JAZ repressor OsJAZ11 in rice to alleviate the root growth inhibitory action of JA. OsJAZ11 is a low phosphate (Pi) responsive gene which is transcriptionally regulated by OsPHR2. We report that OsJAZ11 overexpression promoted primary and seminal root elongation which enhanced Pi foraging. Expression studies revealed that overexpression of OsJAZ11 also reduced Pi starvation response (PSR) under Pi limiting conditions. Moreover, OsJAZ11 overexpression also suppressed JA signaling and biosynthesis as compared to wild type (WT). We further demonstrated that the C-terminal region of OsJAZ11 was crucial for stimulating root elongation in overexpression lines. Rice transgenics overexpressing truncated OsJAZ11ΔC transgene (i.e., missing C-terminal region) exhibited reduced root length and Pi uptake. Interestingly, OsJAZ11 also regulates Pi homeostasis via physical interaction with a key Pi sensing protein, OsSPX1. Our study highlights the functional connections between JA and Pi signaling and reveals JAZ repressors as a promising candidate for improving low Pi tolerance of elite rice genotypes

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Spectra of distorted quantum ring in external fields

    Get PDF
    941-948The spectra and response of a single electron on a distorted quantum ring have been studied in detail. The distortion in the ring has been taken care by a geometrical factor. We take few different cases of distortion. Role of strength of the distortion along with the external static and laser field on spectrum has been studied

    Engineering optical properties of double quantum well systems

    Get PDF
    641-650Linear, nonlinear and total absorption coefficient and refractive index changes of double quantum well systems have been studied theoretically in the presence of external magnetic field applied along the growth direction. The analytical expressions for the linear and nonlinear optical properties have been obtained using density matrix method. The optical properties have been studied in detail for various quantum well shapes, e.g., rectangular, triangular and parabolic, and laser parameters. Shape effects play an important role in modifying the response of quantum heterostructures to external fields. The role of asymmetry parameter on quantum well optical properties has been emphasized

    Complete nucleotide sequence of an Indian strain of Japanese Encephalitis Virus: sequence comparison with other strains and phylogenetic analysis

    No full text
    Abstract. The RNA genome of an Indian strain of Japanese encephalitis virus (JEV), GP78, was reverse transcribed and the cDNA fragments were cloned in bacterial plasmids. Nucleotide sequencing of the cDNA clones covering the entire genome of the virus established that the GP78 genome was 10,976 nucleotides long. An open reading frame of 10,296 bases, capable of coding for a 3,432 amino acid polyprotein, was flanked by 95- and 585base long 5�- and 3�-non-coding regions, respectively. When compared with the nucleotide sequence of the JaOArS982 strain, the JEV GP78 genome had a number of nucleotide substitutions that were scattered throughout the genome except for the 5�-noncoding region, the sequence of which was fully conserved. Comparison of the complete genome sequences of different JEV isolates showed a 1.3–4.1 % nucleotide sequence divergence among them, which resulted in 0.6–l.8 % amino acid sequence divergence. Analysis based on the complete genome sequences of different JEV isolates showed that the GP78 isolate from India was phylogenetically closer to the Chinese SA14 isolate. Japanese encephalitis virus (JEV) is a mosquito-borne virus that was first isolated from a human case in Japan in 1933. The virus has since become a major public healt

    Not Available

    No full text
    Not AvailableNot AvailableNot Availabl

    Not Available

    No full text
    Not AvailableNot AvailableNot Availabl
    corecore