40 research outputs found

    A novel two-point gradient method for Regularization of inverse problems in Banach spaces

    Full text link
    In this paper, we introduce a novel two-point gradient method for solving the ill-posed problems in Banach spaces and study its convergence analysis. The method is based on the well known iteratively regularized Landweber iteration method together with an extrapolation strategy. The general formulation of iteratively regularized Landweber iteration method in Banach spaces excludes the use of certain functions such as total variation like penalty functionals, L1L^1 functions etc. The novel scheme presented in this paper allows to use such non-smooth penalty terms that can be helpful in practical applications involving the reconstruction of several important features of solutions such as piecewise constancy and sparsity. We carefully discuss the choices for important parameters, such as combination parameters and step sizes involved in the design of the method. Additionally, we discuss an example to validate our assumptions.Comment: Submitted in Applicable Analysi

    Stochastic Data-Driven Bouligand Landweber Method for Solving Non-smooth Inverse Problems

    Full text link
    In this study, we present and analyze a novel variant of the stochastic gradient descent method, referred as Stochastic data-driven Bouligand Landweber iteration tailored for addressing the system of non-smooth ill-posed inverse problems. Our method incorporates the utilization of training data, using a bounded linear operator, which guides the iterative procedure. At each iteration step, the method randomly chooses one equation from the nonlinear system with data-driven term. When dealing with the precise or exact data, it has been established that mean square iteration error converges to zero. However, when confronted with the noisy data, we employ our approach in conjunction with a predefined stopping criterion, which we refer to as an \textit{a-priori} stopping rule. We provide a comprehensive theoretical foundation, establishing convergence and stability for this scheme within the realm of infinite-dimensional Hilbert spaces. These theoretical underpinnings are further bolstered by discussing an example that fulfills assumptions of the paper

    Concurrent reactive arthritis and myelitis – a case report

    Get PDF
    Reactive arthritis is a post infectious multisystem illness which usually occurs after episodes of diarrhoea or urinary tract infections. It can cause many manifestations other than the musculoskeletal system including skin, urogenital system and eyes. However the central nervous system is only occasionally involved. We discuss the case of a 32 year old male who presented with myelitis in association with reactive arthritis

    Enabling low power acoustics for capillary sonoreactors

    Get PDF
    Capillary reactors demonstrate outstanding potential for on-demand flow chemistry applications. However, non-uniform distribution of multiphase flows, poor solid handling, and the risk of clogging limit their usability for continuous manufacturing. While ultrasonic irradiation has been traditionally applied to address some of these limitations, their acoustic efficiency, uniformity and scalability to larger reactor systems are often disregarded. In this work, high-speed microscopic imaging reveals how cavitation-free ultrasound can unclog and prevent the blockage of capillary reactors. Modeling techniques are then adapted from traditional acoustic designs and applied to simulate and prototype sonoreactors with wider and more uniform sonication areas. Blade-, block- and cylindrical shape sonotrodes are optimized to accommodate longer capillary lengths in sonoreactors resonating at 28 kHz. Finally, a novel helicoidal capillary sonoreactor is proposed to potentially deal with a high concentration of solid particles in miniaturized flow chemistry. The acoustic designs and first principle rationalization presented here offer a transformative step forward in the scale-up of efficient capillary sonoreactors.This research was partially funded by the EU project MAPSYN (Microwave, Acoustic and Plasma SYNtheses) developed in the group of Photochemistry and Electrochemistry of Semiconductors (GFES) at the University of Alicante (Spain), under grant agreement No. CP-IP 309376 of the European Union Seventh Framework Program

    Hybridization from Guest-Host Interactions Reduces the Thermal Conductivity of Metal-Organic Frameworks

    Get PDF
    We experimentally and theoretically investigate the thermal conductivity and mechanical properties of polycrystalline HKUST-1 metal–organic frameworks (MOFs) infiltrated with three guest molecules: tetracyanoquinodimethane (TCNQ), 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ), and (cyclohexane-1,4-diylidene)dimalononitrile (H4-TCNQ). This allows for modification of the interaction strength between the guest and host, presenting an opportunity to study the fundamental atomic scale mechanisms of how guest molecules impact the thermal conductivity of large unit cell porous crystals. The thermal conductivities of the guest@MOF systems decrease significantly, by on average a factor of 4, for all infiltrated samples as compared to the uninfiltrated, pristine HKUST-1. This reduction in thermal conductivity goes in tandem with an increase in density of 38% and corresponding increase in heat capacity of ∼48%, defying conventional effective medium scaling of thermal properties of porous materials. We explore the origin of this reduction by experimentally investigating the guest molecules’ effects on the mechanical properties of the MOF and performing atomistic simulations to elucidate the roles of the mass and bonding environments on thermal conductivity. The reduction in thermal conductivity can be ascribed to an increase in vibrational scattering introduced by extrinsic guest-MOF collisions as well as guest molecule-induced modifications to the intrinsic vibrational structure of the MOF in the form of hybridization of low frequency modes that is concomitant with an enhanced population of localized modes. The concentration of localized modes and resulting reduction in thermal conductivity do not seem to be significantly affected by the mass or bonding strength of the guest species

    Ultra-high mobility transparent organic thin film transistors grown by an off-centre spin-coating method

    Get PDF
    Organic semiconductors with higher carrier mobility and better transparency have been actively pursued for numerous applications, such as flat-panel display backplane and sensor arrays. The carrier mobility is an important figure of merit and is sensitively influenced by the crystallinity and the molecular arrangement in a crystal lattice. Here we describe the growth of a highly aligned meta-stable structure of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) from a blended solution of C8-BTBT and polystyrene by using a novel offcentre spin-coating method. Combined with a vertical phase separation of the blend, the highly aligned, meta-stable C8-BTBT films provide a significantly increased thin film transistor hole mobility up to 43 cm2 Vs�1 (25 cm2 Vs�1 on average), which is the highest value reported to date for all organic molecules. The resulting transistors show high transparency of 490% over the visible spectrum, indicating their potential for transparent, high-performance organic electronics
    corecore