273 research outputs found

    How your sexual orientation affects your salary in the UK

    Get PDF
    Research concerning labour market discrimination based on sexual orientation has yielded varying outcomes so far. Studies were usually based on small on unrepresentative samples. Drawing on a large and previously unavailable dataset, Cevat Giray Aksoy, Christopher S. Carpenter and Jefferson Frank find that gay men earn less than straight ones and heterosexual women earn less than lesbians

    How your sexual orientation affects your salary

    Get PDF
    Research on the relationship between sexual orientation and labour market earning has relied either on surveys with small samples of sexual minorities, or has used large samples of same-sex couples, often with sample discrepancies. Drawing on a large individual-level dataset, Cevat Giray Aksoy, Christopher S. Carpenter and Jefferson Frank find that in the UK gay men earn less than straight ones and heterosexual women earn less than lesbians

    Mathematical models for use in planning regional water resources and energy systems

    Get PDF
    Existing and projected energy facilities will, in the near future, place major demands on the country's water resources. These demands compete with many other uses of the resources, including municipal and industrial uses, navigation, irrigation, and water quality maintenance. The possible development of coal conversion facilities presents another potential water demand. Complex public sector problems such as: 1) the extent and development of coal conversion capacity, 2) interbasin transfer of water, 3) cooling technologies for large energy facilities, 4) diversion of Lake Michigan water, and 5) allowable withdrawal and consumptive uses of river water, all arise from the interlocking nature of the water resources-energy system. Although mathematical models cannot solve these problems directly, they can be useful in gaining insight into major issues associated with policy alternatives. With the aid of such models, quantitative trends such as costs and water development patterns associated with each decision alternative can be more readily identified. In this report, mathematical models are presented for use in planning a regional allocation of water for energy facilities as well as for other water uses. These models include components for the interrelated water and energy subsystems. The use of these models in conjunction with other existing models in order to provide a better picture of the overall system is discussed. Since the models use widely available computer codes, they are practical and easy to utilize. Example applications are presented, with a discussion of computational results.U.S. Geological SurveyU.S. Department of the InteriorOpe

    Security Analysis of the Silver Bullet Technique for RowHammer Prevention

    Full text link
    The purpose of this document is to study the security properties of the Silver Bullet algorithm against worst-case RowHammer attacks. We mathematically demonstrate that Silver Bullet, when properly configured and implemented in a DRAM chip, can securely prevent RowHammer attacks. The demonstration focuses on the most representative implementation of Silver Bullet, the patent claiming many implementation possibilities not covered in this demonstration. Our study concludes that Silver Bullet is a promising RowHammer prevention mechanism that can be configured to operate securely against RowHammer attacks at various efficiency-area tradeoff points, supporting relatively small hammer count values (e.g., 1000) and Silver Bullet table sizes (e.g., 1.06KB).Comment: 40 page

    MOCVD of Cd(1-x)Zn(x)S/CdTe PV cells using an ultra-thin absorber layer

    Get PDF
    Ultra-thin Cd(₁ ₋ ₓ)Zn(ₓ)S/CdTe devices were produced by atmospheric pressure metal organic chemical vapour deposition (AP-MOCVD) with varying CdTe absorber thicknesses ranging from 1.0 to 0.2 mm and compared to baseline cells with total CdTe thickness of 2.25ÎŒ. The ultra-thin CdTe layers (≀1 ÎŒm) were intentionally doped with As to induce p-type conductivity in the absorber. Cell performance reduced with CdTe thickness, with the magnitude of photo-current generation loss becoming more significant for the very thin CdTe layers. The decline in cell performance was lower than the optically limited performance relating to a decrease in shunt resistance, Rsh, especially for the thinnest cells due to areas of incomplete CdTe coverage and large presence of pin-holes leading to micro-shorts. Incorporation of Zn into the CdS window layer improved cell performance for all devices except when 0.2 ÎŒm thick CdTe was used. This improvement was markedly in the blue region owing to enhanced optical transparency of the window layer. External quantum efficiency (EQE) measurements showed a red-shift of the window layer absorption edge due to leaching out of Zn during the CdCl₂ treatment. Reduction of the CdCl₂ deposition time was demonstrated to recover the blue response of the ultra-thin cells

    Chemical analysis of Cd12xZnxS/CdTe solar cells by plasma profiling TOFMS

    Get PDF
    Thin film CdTe photovoltaic (PV) devices and reference layers obtained by the atmospheric pressure metalorganic vapour deposition (AP-MOCVD) method have been studied for their chemical structure using plasma profiling time-of-flight-mass spectroscopy (PP-TOFMS, also called glow discharge TOFMS). Different levels of arsenic (As) dopant in CdTe films were measured by PP-TOFMS and compared to results obtained from a more conventional depth profiling method (secondary ion mass spectrometry or SIMS). This comparison showed that PPTOFMS has the sufficient sensitivity towards detection of the As dopant in CdTe and hence is suited as a rapid, low vacuum tool in controlling the large scale production of CdTe PV materials

    The gay glass ceiling in the UK

    Get PDF

    Fast Visuomotor Processing of Redundant Targets: The Role of the Right Temporo-Parietal Junction

    Get PDF
    Parallel processing of multiple sensory stimuli is critical for efficient, successful interaction with the environment. An experimental approach to studying parallel processing in sensorimotor integration is to examine reaction times to multiple copies of the same stimulus. Reaction times to bilateral copies of light flashes are faster than to single, unilateral light flashes. These faster responses may be due to ‘statistical facilitation’ between independent processing streams engaged by the two copies of the light flash. On some trials, however, reaction times are faster than predicted by statistical facilitation. This indicates that a neural ‘coactivation’ of the two processing streams must have occurred. Here we use fMRI to investigate the neural locus of this coactivation. Subjects responded manually to the detection of unilateral light flashes presented to the left or right visual hemifield, and to the detection of bilateral light flashes. We compared the bilateral trials where subjects' reaction times exceeded the limit predicted by statistical facilitation to bilateral trials that did not exceed the limit. Activity in the right temporo-parietal junction was higher in those bilateral trials that showed coactivation than in those that did not. These results suggest the neural coactivation observed in visuomotor integration occurs at a cognitive rather than sensory or motor stage of processing
    • 

    corecore