39 research outputs found

    Colorless Components for WDM-based Optical Access Networks

    No full text
    Section B "PHOTONICS & LASERS AND APPLICATIONS" [B-45]International audienceThis paper presents our work carried out in the colorless-component technologies for high bit-rate optical access networks, which are based on WDM-PON (wavelength division multiplexed passive optical networks). The colorless concept consists in using identical and wavelength-independent components that will act as the generic transmitter in WDM-PON systems. The transmitted wavelength is imposed, for each colorless component, by an external optical signal. Our studies include two types of colorless components: The Injection-Locked Fabry-Perot laser (IL-FP) and the Reflective Electro-Absorption Modulator integrated with a Semiconductor Optical Amplifier (REAM-SOA). For the IL-FP, the properties of the component strongly depend on the injected optical signal. We demonstrate the improvement by injection-locking of the laser's performances in terms of intensity noise, chirp and bandwidth. For the REAM-SOA, the static properties such as reflection gain and noise characteristic are examined. We demonstrate the feasibility of the REAM-SOA in a transmission experiment in a PON configuration at 10 Gbps with up to 25 km of SMF, using remote modulation technique

    Quantum Dash Actively Mode-locked Fabry-Perot Laser Module demonstrated as part of a Wavelength Tunable RZ Transmitter

    No full text
    International audienceA quantum dash Fabry-Perot actively modelocked laser module is tested as part of a 42.7 Gbit/s transmitter with more than 10 nm wavelength tunability. Its low chirp level is also assessed through chromatic dispersion tolerance measurements

    Maximum levels of cross鈥恈ontamination for 24 antimicrobial active substances in non鈥恡arget feed. Part 12: Tetracyclines: tetracycline, chlortetracycline, oxytetracycline, and doxycycline

    Get PDF
    [EN] The specific concentrations of tetracycline, chlortetracycline, oxytetracycline and doxycycline in non-target feed for food-producing animals, below which there would not be an effect on the emergence of, and/or selection for, resistance in bacteria relevant for human and animal health, as well as the specific antimicrobial concentrations in feed which have an effect in terms of growth promotion/increased yield were assessed by EFSA in collaboration with EMA. Details of the methodology used for this assessment, associated data gaps and uncertainties are presented in a separate document. To address antimicrobial resistance, the Feed Antimicrobial Resistance Selection Concentration (FARSC) model developed specifically for the assessment was applied. The FARSC for these four tetracyclines was estimated. To address growth promotion, data from scientific publications obtained from an extensive literature review were used. Levels in feed that showed to have an effect on growth promotion/increased yield were reported for tetracycline, chlortetracycline, oxytetracycline, whilst for doxycycline no suitable data for the assessment were available. Uncertainties and data gaps associated with the levels reported were addressed. It was recommended to perform further studies to supply more diverse and complete data related to the requirements for calculation of the FARSC for these antimicrobialsSIThe specific concentrations of tetracycline, chlortetracycline, oxytetracycline and doxycycline in non-target feed for food-producing animals, below which there would not be an effect on the emergence of, and/or selection for, resistance in bacteria relevant for human and animal health, as well as the specific antimicrobial concentrations in feed which have an effect in terms of growth promotion/increased yield were assessed by EFSA in collaboration with EMA. Details of the methodology used for this assessment, associated data gaps and uncertainties are presented in a separate document. To address antimicrobial resistance, the Feed Antimicrobial Resistance Selection Concentration (FARSC) model developed specifically for the assessment was applied. The FARSC for these four tetracyclines was estimated. To address growth promotion, data from scientific publications obtained from an extensive literature review were used. Levels in feed that showed to have an effect on growth promotion/increased yield were reported for tetracycline, chlortetracycline, oxytetracycline, whilst for doxycycline no suitable data for the assessment were available. Uncertainties and data gaps associated with the levels reported were addressed. It was recommended to perform further studies to supply more diverse and complete data related to the requirements for calculation of the FARSC for these antimicrobial

    Maximum levels of cross鈥恈ontamination for 24 antimicrobial active substances in non鈥恡arget feed. Part 11: Sulfonamides

    Get PDF
    [EN] The specific concentrations of sulfonamides in non-target feed for food-producing animals, below which there would not be an effect on the emergence of, and/or selection for, resistance in bacteria relevant for human and animal health, as well as the specific antimicrobial concentrations in feed which have an effect in terms of growth promotion/increased yield were assessed by EFSA in collaboration with EMA. Details of the methodology used for this assessment, associated data gaps and uncertainties, are presented in a separate document. To address antimicrobial resistance, the Feed Antimicrobial Resistance Selection Concentration (FARSC) model developed specifically for the assessment was applied. However, due to the lack of data on the parameters required to calculate the FARSC, it was not possible to conclude the assessment until further experimental data are available. To address growth promotion, data from scientific publications obtained from an extensive literature review were used. Levels in feed that showed to have an effect on growth promotion/increased yield were identified for three sulfonamides: sulfamethazine, sulfathiazole and sulfamerazine. It was recommended to carry out studies to generate the data that are required to fill the gaps which prevented the calculation of the FARSC for these antimicrobials.SIThe BIOHAZ Panel, leading Panel in charge of the adoption of the scientificopinion and assessment of Term of Reference 1 (ToR1, antimicrobial resistance) wishes to thank thefollowing for the support provided to this scientific output: EFSA Panel on Animal Health and Welfare(AHAW Panel), who supported ToR1 assessments development and endorsement of those sectionsunder their remit (animal production, main use of antimicrobials); EFSA Panel for Additives andProducts or Substances used in Animal Feed (FEEDAP), in charge of the assessment and endorsementof ToR2, and providing advice and data needed for ToR1 assessments; European Medicines Agency(EMA), who was represented by an external expert and EMA secretariat as members of the WorkingGroup (WG); Valeria Bortolaia, who was member of the WG until 17 April 2020; EFSA staff members:Angelica Amaduzzi, Gina Cioacata, Pilar Garc 谋a-Vello, Michaela Hempen, Rita Navarrete, Daniel Plazaand Anita Radovnikovic; EMA staff members: Barbara Freischem, Zoltan Kunsagi, Nicholas Jarrett, JordiTorren, and Julia F abrega (currently EFSA staff). The BIOHAZ Panel wishes also to acknowledge theEMA Committee for Medicinal Products for Veterinary Use (CVMP) and their experts

    Maximum levels of cross鈥恈ontamination for 24 antimicrobial active substances in non鈥恡arget feed. Part 2: Aminoglycosides/aminocyclitols: apramycin, paromomycin, neomycin and spectinomycin

    Get PDF
    [EN] The specific concentrations of apramycin, paromomycin, neomycin and spectinomycin in non-target feed for food-producing animals, below which there would not be an effect on the emergence of, and/or selection for, resistance in bacteria relevant for human and animal health, as well as the specific antimicrobial concentrations in feed which have an effect in terms of growth promotion/increased yield, were assessed by EFSA in collaboration with EMA. Details of the methodology used for this assessment, associated data gaps and uncertainties, are presented in a separate document. To address antimicrobial resistance, the Feed Antimicrobial Resistance Selection Concentration (FARSC) model developed specifically for the assessment was applied. However, due to the lack of data on the parameters required to calculate the FARSC for these antimicrobials, it was not possible to conclude the assessment until further experimental data become available. To address growth promotion, data from scientific publications obtained from an extensive literature review were used. Levels in feed that showed to have an effect on growth promotion/increased yield were reported for apramycin and neomycin, whilst for paromomycin and spectinomycin, no suitable data for the assessment were available. It was recommended to carry out studies to generate the data that are required to fill the gaps which prevented the calculation of the FARSC for these four antimicrobialsSIThe BIOHAZ Panel, leading Panel in charge of the adoption of the scientific opinion and assessment of Term of Reference 1 (ToR1, antimicrobial resistance) wishes to thank the following for the support provided to this scientific output: EFSA Panel on Animal Health and Welfare (AHAW Panel), who supported ToR1 assessments development and endorsement of those sections under their remit (animal production, main use of antimicrobials); EFSA Panel for Additives and Products or Substances used in Animal Feed (FEEDAP), in charge of the assessment and endorsement of ToR2, and providing advice and data needed for ToR1 assessments; European Medicines Agency (EMA), who was represented by an external expert and EMA secretariat as members of the Working Group (WG); Valeria Bortolaia, who was member of the WG until 17 April 2020; EFSA staff members: Angelica Amaduzzi, Gina Cioacata, Pilar Garc 谋a-Vello, Michaela Hempen, Rita Navarrete, Daniel Plaza and Anita Radovnikovic; EMA staff members: Barbara Freischem, Zoltan Kunsagi, Nicholas Jarrett, Jordi Torren, and Julia F abrega (currently EFSA staff). The BIOHAZ Panel wishes also to acknowledge the EMA Committee for Medicinal Products for Veterinary Use (CVMP) expert

    Maximum levels of cross鈥恈ontamination for 24 antimicrobial active substances in non鈥恡arget feed. Part 8: Pleuromutilins: tiamulin and valnemulin

    Get PDF
    [EN] The specific concentrations of tiamulin and valnemulin in non-target feed for food-producing animals, below which there would not be an effect on the emergence of, and/or selection for, resistance in bacteria relevant for human and animal health, as well as the specific antimicrobial concentrations in feed which have an effect in terms of growth promotion/increased yield were assessed by EFSA in collaboration with EMA. Details of the methodology used for this assessment, associated data gaps and uncertainties, are presented in a separate document. To address antimicrobial resistance, the Feed Antimicrobial Resistance Selection Concentration (FARSC) model developed specifically for the assessment was applied. However, due to the lack of data on the parameters required to calculate the FARSC, it was not possible to conclude the assessment until further experimental data become available. To address growth promotion, data from scientific publications obtained from an extensive literature review were used. Levels in feed that showed to have an effect on growth promotion/increased yield were reported for tiamulin, while for valnemulin no suitable data for the assessment were available. It was recommended to carry out studies to generate the data that are required to fill the gaps which prevented the calculation of the FARSC for these two antimicrobials.SIThe BIOHAZ Panel, leading Panel in charge of the adoption of the scientific opinion and assessment of Term of Reference 1 (ToR1, antimicrobial resistance) wishes to thank the following for the support provided to this scientific output: EFSA Panel on Animal Health and Welfare (AHAW Panel), who supported ToR1 assessments development and endorsement of those sections under their remit (animal production, main use of antimicrobials); EFSA Panel for Additives and Products or Substances used in Animal Feed (FEEDAP), in charge of the assessment and endorsement of ToR2, and providing advice and data needed for ToR1 assessments; European Medicines Agency (EMA), who was represented by an external expert and EMA secretariat as members of the Working Group (WG); Valeria Bortolaia, who was member of the WG until 17 April 2020; EFSA staff members: Angelica Amaduzzi, Gina Cioacata, Pilar Garc 谋a-Vello, Michaela Hempen, Rita Navarrete, Daniel Plaza and Anita Radovnikovic; EMA staff members: Barbara Freischem, Zoltan Kunsagi, Nicholas Jarrett, Jordi Torren, and Julia Fabrega (currently EFSA staff). The BIOHAZ Panel wishes also to acknowledge the EMA Committee for Medicinal Products for Veterinary Use (CVMP) and their expert

    Maximum levels of cross鈥恈ontamination for 24 antimicrobial active substances in non鈥恡arget feed. Part 3: Amprolium

    Get PDF
    [EN] The specific concentrations of amprolium in non-target feed for food-producing animals, below which there would not be an effect on the emergence of, and/or selection for, resistance in bacteria relevant for human and animal health, as well as the specific antimicrobial concentrations in feed which have an effect in terms of growth promotion/increased yield were assessed by EFSA in collaboration with EMA. Details of the methodology used for this assessment, associated data gaps and uncertainties, are presented in a separate document. To address antimicrobial resistance, the Feed Antimicrobial Resistance Selection Concentration (FARSC) model developed specifically for the assessment was applied. However, due to the lack of data on the parameters required to calculate the FARSC for amprolium, it was not possible to conclude the assessment. To address growth promotion, data from scientific publications obtained from an extensive literature review were used. Levels of amprolium in feed that showed to have an effect on growth promotion/increased yield were reported. The lack of antibacterial activity at clinically relevant concentrations for amprolium suggests that further studies relating to bacterial resistance are not a priority.SI: The BIOHAZ Panel, leading Panel in charge of the adoption of the scientific opinion and assessment of Term of Reference 1 (ToR1, antimicrobial resistance) wishes to thank the following for the support provided to this scientific output: EFSA Panel on Animal Health and Welfare (AHAW Panel), who supported ToR1 assessments development and endorsement of those sections under their remit (animal production, main use of antimicrobials); EFSA Panel for Additives and Products or Substances used in Animal Feed (FEEDAP), in charge of the assessment and endorsement of ToR2, and providing advice and data needed for ToR1 assessments; European Medicines Agency (EMA), who was represented by an external expert and EMA secretariat as members of the Working Group (WG); Valeria Bortolaia, who was member of the WG until 17 April 2020; EFSA staff members: Angelica Amaduzzi, Gina Cioacata, Pilar Garc 谋a-Vello, Michaela Hempen, Rita Navarrete, Daniel Plaza and Anita Radovnikovic; EMA staff members: Barbara Freischem, Zoltan Kunsagi, Nicholas Jarrett, Jordi Torren, and Julia Fabrega (currently EFSA staff). The BIOHAZ Panel wishes also to acknowledge the EMA Committee for Medicinal Products for Veterinary Use (CVMP) and their experts

    Maximum levels of cross鈥恈ontamination for 24 antimicrobial active substances in non鈥恡arget feed. Part 9: Polymyxins: colistin

    Get PDF
    [EN] The specific concentrations of colistin in non-target feed for food-producing animals, below which there would not be an effect on the emergence of, and/or selection for, resistance in bacteria relevant for human and animal health, as well as the specific antimicrobial concentrations in feed which have an effect in terms of growth promotion/increased yield were assessed by EFSA in collaboration with EMA. Details of the methodology used for this assessment, associated data gaps and uncertainties, are presented in a separate document. To address antimicrobial resistance, the Feed Antimicrobial Resistance Selection Concentration (FARSC) model developed specifically for the assessment was applied. However, due to the lack of data on the parameters required to calculate the FARSC, it was not possible to conclude the assessment until further experimental data become available. To address growth promotion, data from scientific publications obtained from an extensive literature review were used. Levels of colistin in feed that showed to have an effect on growth promotion/increased yield were reported. It was recommended to carry out studies to generate the data that are required to fill the gaps which prevented the calculation of the FARSC for these antimicrobialsSIThe BIOHAZ Panel, leading Panel in charge of the adoption of the scientific opinion and assessment of Term of Reference 1 (ToR1, antimicrobial resistance) wishes to thank the following for the support provided to this scientific output: EFSA Panel on Animal Health and Welfare (AHAW Panel), who supported ToR1 assessments development and endorsement of those sections under their remit (animal production, main use of antimicrobials); EFSA Panel for Additives and Products or Substances used in Animal Feed (FEEDAP), in charge of the assessment and endorsement of ToR2, and providing advice and data needed for ToR1 assessments; European Medicines Agency (EMA), who was represented by an external expert and EMA secretariat as members of the Working Group (WG); Valeria Bortolaia, who was member of the WG until 17 April 2020; EFSA staff members: Angelica Amaduzzi, Gina Cioacata, Pilar Garc 谋a-Vello, Michaela Hempen, Rita Navarrete, Daniel Plaza and Anita Radovnikovic; EMA staff members: Barbara Freischem, Zoltan Kunsagi, Nicholas Jarrett, Jordi Torren, and Julia F abrega (currently EFSA staff). The BIOHAZ Panel wishes also to acknowledge the EMA Committee for Medicinal Products for Veterinary Use (CVMP) and their expert

    Maximum levels of cross-contamination for 24 antimicrobial active substances in non-target feed. Part 7: Amphenicols: florfenicol and thiamphenicol

    Get PDF
    The specific concentrations of florfenicol and thiamphenicol in non-target feed for food-producing animals, below which there would not be an effect on the emergence of, and/or selection for, resistance in bacteria relevant for human and animal health, as well as the specific antimicrobial concentrations in feed which have an effect in terms of growth promotion/increased yield, were assessed by EFSA in collaboration with EMA. Details of the methodology used for this assessment, associated data gaps and uncertainties, are presented in a separate document. To address antimicrobial resistance, the Feed Antimicrobial Resistance Selection Concentration (FARSC) model developed specifically for the assessment was applied. The FARSC for florfenicol was estimated. However, due to the lack of data, the calculation of the FARSC for thiamphenicol was not possible until further experimental data become available. To address growth promotion, data from scientific publications obtained from an extensive literature review were used. Levels in feed that showed to have an effect on growth promotion/increased yield were reported for florfenicol, whilst for thiamphenicol no suitable data for the assessment were available. Uncertainties and data gaps associated to the levels reported were addressed. For florfenicol, it was recommended to perform further studies to supply more diverse and complete data related to the requirements for calculation of the FARSC, whereas for thiamphenicol, the recommendation was to generate the data required to fill the gaps which prevented the FARSC calculation.info:eu-repo/semantics/publishedVersio

    Maximum levels of cross-contamination for 24 antimicrobial active substances in non-target feed. Part 11: Sulfonamides

    Get PDF
    The specific concentrations of sulfonamides in non-target feed for food-producing animals, below which there would not be an effect on the emergence of, and/or selection for, resistance in bacteria relevant for human and animal health, as well as the specific antimicrobial concentrations in feed which have an effect in terms of growth promotion/increased yield were assessed by EFSA in collaboration with EMA. Details of the methodology used for this assessment, associated data gaps and uncertainties, are presented in a separate document. To address antimicrobial resistance, the Feed Antimicrobial Resistance Selection Concentration (FARSC) model developed specifically for the assessment was applied. However, due to the lack of data on the parameters required to calculate the FARSC, it was not possible to conclude the assessment until further experimental data are available. To address growth promotion, data from scientific publications obtained from an extensive literature review were used. Levels in feed that showed to have an effect on growth promotion/increased yield were identified for three sulfonamides: sulfamethazine, sulfathiazole and sulfamerazine. It was recommended to carry out studies to generate the data that are required to fill the gaps which prevented the calculation of the FARSC for these antimicrobials.info:eu-repo/semantics/publishedVersio
    corecore