6,235 research outputs found

    Intermediate quantum maps for quantum computation

    Full text link
    We study quantum maps displaying spectral statistics intermediate between Poisson and Wigner-Dyson. It is shown that they can be simulated on a quantum computer with a small number of gates, and efficiently yield information about fidelity decay or spectral statistics. We study their matrix elements and entanglement production, and show that they converge with time to distributions which differ from random matrix predictions. A randomized version of these maps can be implemented even more economically, and yields pseudorandom operators with original properties, enabling for example to produce fractal random vectors. These algorithms are within reach of present-day quantum computers.Comment: 4 pages, 4 figures, research done at http://www.quantware.ups-tlse.fr

    Open problems in nuclear density functional theory

    Full text link
    This note describes five subjects of some interest for the density functional theory in nuclear physics. These are, respectively, i) the need for concave functionals, ii) the nature of the Kohn-Sham potential for the radial density theory, iii) a proper implementation of a density functional for an "intrinsic" rotational density, iv) the possible existence of a potential driving the square root of the density, and v) the existence of many models where a density functional can be explicitly constructed.Comment: 10 page

    Delocalization transition for the Google matrix

    Full text link
    We study the localization properties of eigenvectors of the Google matrix, generated both from the World Wide Web and from the Albert-Barabasi model of networks. We establish the emergence of a delocalization phase for the PageRank vector when network parameters are changed. In the phase of localized PageRank, a delocalization takes place in the complex plane of eigenvalues of the matrix, leading to delocalized relaxation modes. We argue that the efficiency of information retrieval by Google-type search is strongly affected in the phase of delocalized PageRank.Comment: 4 pages, 5 figures. Research done at http://www.quantware.ups-tlse.fr

    BRST, anti-BRST and their geometry

    Full text link
    We continue the comparison between the field theoretical and geometrical approaches to the gauge field theories of various types, by deriving their Becchi-Rouet-Stora-Tyutin (BRST) and anti-BRST trasformation properties and comparing them with the geometrical properties of the bundles and gerbes. In particular, we provide the geometrical interpretation of the so--called Curci-Ferrari conditions that are invoked for the absolute anticommutativity of the BRST and anti-BRST symmetry transformations in the context of non-Abelian 1-form gauge theories as well as Abelian gauge theory that incorporates a 2-form gauge field. We also carry out the explicit construction of the 3-form gauge fields and compare it with the geometry of 2--gerbes.Comment: A comment added. To appear in Jour. Phys. A: Mathemaical and Theoretica

    Multiqubit symmetric states with high geometric entanglement

    Full text link
    We propose a detailed study of the geometric entanglement properties of pure symmetric N-qubit states, focusing more particularly on the identification of symmetric states with a high geometric entanglement and how their entanglement behaves asymptotically for large N. We show that much higher geometric entanglement with improved asymptotical behavior can be obtained in comparison with the highly entangled balanced Dicke states studied previously. We also derive an upper bound for the geometric measure of entanglement of symmetric states. The connection with the quantumness of a state is discussed

    Entangled random pure states with orthogonal symmetry: exact results

    Full text link
    We compute analytically the density ϱN,M(λ)\varrho_{N,M}(\lambda) of Schmidt eigenvalues, distributed according to a fixed-trace Wishart-Laguerre measure, and the average R\'enyi entropy ⟨Sq⟩\langle\mathcal{S}_q\rangle for reduced density matrices of entangled random pure states with orthogonal symmetry (β=1)(\beta=1). The results are valid for arbitrary dimensions N=2k,MN=2k,M of the corresponding Hilbert space partitions, and are in excellent agreement with numerical simulations.Comment: 15 pages, 5 figure

    Block orthogonal polynomials: I. Definition and properties

    Full text link
    Constrained orthogonal polynomials have been recently introduced in the study of the Hohenberg-Kohn functional to provide basis functions satisfying particle number conservation for an expansion of the particle density. More generally, we define block orthogonal (BO) polynomials which are orthogonal, with respect to a first Euclidean scalar product, to a given ii-dimensional subspace Ei{\cal E}_i of polynomials associated with the constraints. In addition, they are mutually orthogonal with respect to a second Euclidean scalar product. We recast the determination of these polynomials into a general problem of finding particular orthogonal bases in an Euclidean vector space endowed with distinct scalar products. An explicit two step Gram-Schmidt orthogonalization (G-SO) procedure to determine these bases is given. By definition, the standard block orthogonal (SBO) polynomials are associated with a choice of Ei{\cal E}_i equal to the subspace of polynomials of degree less than ii. We investigate their properties, emphasizing similarities to and differences from the standard orthogonal polynomials. Applications to classical orthogonal polynomials will be given in forthcoming papers.Comment: This is a reduced version of the initial manuscript, the number of pages being reduced from 34 to 2
    • …
    corecore