17 research outputs found

    Macromolecular confinement of therapeutic protein in polymeric particles for controlled release: insulin as a case study

    Get PDF
    Sustained release systems for therapeutic proteins have been widely studied targeting to improve the action of these drugs. Molecular entrapping of proteins is particularly challenging due to their conformational instability. We have developed a micro-structured poly-epsilon-caprolactone (PCL) particle system loaded with human insulin using a simple double-emulsion w/o/w method followed by solvent evaporation method. This formulation is comprised by spheric-shaped microparticles with average size of 10 micrometers. In vitro release showed a biphasic behavior such as a rapid release with about 50% of drug delivered within 2 hours and a sustained phase for up to 48 h. The subcutaneous administration of microencapsulated insulin showed a biphasic effect on glycemia in streptozotocin-induced diabetic mice, compatible with short and intermediate-acting behaviors, with first transition peak at about 2 h and the second phase exerting effect for up to 48h after s.c. administration. This study reveals that a simplified double-emulsion system results in biocompatible human-insulin-loaded PCL microparticles that might be used for further development of optimized sustained release formulations of insulin to be used in the restoration of hormonal levels

    TbVps15 is required for vesicular transport and cytokinesis in Trypanosoma brucei

    No full text
    The class III phosphatidylinositol 3-kinase (PI3K) Vps34 is an important regulator of key cellular functions, including cell growth, survival, intracellular trafficking, autophagy and nutrient sensing. In yeast, Vps34 is associated with the putative serine/threonine protein kinase Vps15, however, its role in signaling has not been deeply evaluated. Here, we have identified the Vps15 orthologue in Trypanosoma brucei, named TbVps15. Knockdown of TbVps15 expression by interference RNA resulted in inhibition of cell growth and blockage of cytokinesis. Scanning electron microcopy revealed a variety of morphological abnormalities, with enlarged parasites and dividing cells that often exhibited a detached flagellum. Transmission electron microscopy analysis of TbVps15 RNAi cells showed an increase in intracellular vacuoles of the endomembrane system and some cells displayed an enlargement of the flagellar pocket, a common feature of cells defective in endocytosis. Moreover, uptake of dextran, transferrin and Concanavalin A was impaired. Finally, TbVps15 downregulation affected the PI3K activity, supporting the hypothesis that TbVps15 and TbVps34 form a complex as occurs in other organisms. In summary, we propose that TbVps15 has a role in the maintenance of cytokinesis, endocytosis and intracellular trafficking in T. brucei.Fil: Schoijet, Alejandra Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Fisiología, Biología Molecular y Celular; ArgentinaFil: Miranda, Kildare. Universidade Federal do Rio de Janeiro; BrasilFil: Sternlieb, Tamara. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; ArgentinaFil: Barrera, Nadia Maricel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; ArgentinaFil: Girard Dias, Wendell. Universidade Federal do Rio de Janeiro; BrasilFil: de Souza, Wanderley. Universidade Federal do Rio de Janeiro; Brasil. Plataforma de Microscopia EletrÎnica Rudolf Barth IOC; BrasilFil: Alonso, Guillermo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Fisiología, Biología Molecular y Celular; Argentin

    Three-Dimensional Models of Soil-Transmitted Helminth Eggs from Light Microscopy Images

    No full text
    The World Health Organization indicates that more than 1.5 billion people are infected with geohelminths. Soil-transmitted helminths prevail mostly in tropical and subtropical regions, in areas with inadequate hygiene and sanitation conditions, and basic health education problems. Nematode eggs are structures of resistance and infection by fecal–oral transmission. When STH eggs are ingested, they can infect the potential host, causing abdominal pain, diarrhea, anemia, malnutrition, and physical-cognitive impacts in children. Taking advantage of the increasing employment of three-dimensional models of these structured based on light microscopy images to improve the research area and education could be an alternative to improve health education and spread scientific information on transmission and prevention. The objective of this work was to produce 3D printed models from bi-dimensional images of eggs based on their real morphological and morphometric characteristics. The virtual models were reconstructed from the acquisition and selection of images obtained using light microscopy. After selecting referential images, we constructed the models based on the vectorization of the egg structures. After vectorization, 3D modeling was performed and printed in PLA. 3D models have a high potential to contribute to the advanced morphological studies and teaching of parasitological sciences, enriching the teaching-learning process applicable in presential or remote teaching of basic education, undergraduate, and post-graduation classes

    Macromolecular confinement of therapeutic protein in polymeric particles for controlled release: insulin as a case study

    No full text
    ABSTRACT Sustained release systems for therapeutic proteins have been widely studied targeting to improve the action of these drugs. Molecular entrapping of proteins is particularly challenging due to their conformational instability. We have developed a micro-structured poly-epsilon-caprolactone (PCL) particle system loaded with human insulin using a simple double-emulsion w/o/w method followed by solvent evaporation method. This formulation is comprised by spheric-shaped microparticles with average size of 10 micrometers. In vitro release showed a biphasic behavior such as a rapid release with about 50% of drug delivered within 2 hours and a sustained phase for up to 48 h. The subcutaneous administration of microencapsulated insulin showed a biphasic effect on glycemia in streptozotocin-induced diabetic mice, compatible with short and intermediate-acting behaviors, with first transition peak at about 2 h and the second phase exerting effect for up to 48h after s.c. administration. This study reveals that a simplified double-emulsion system results in biocompatible human-insulin-loaded PCL microparticles that might be used for further development of optimized sustained release formulations of insulin to be used in the restoration of hormonal levels

    Virtual Reconstruction and Three-Dimensional Printing of Blood Cells as a Tool in Cell Biology Education

    No full text
    <div><p>The cell biology discipline constitutes a highly dynamic field whose concepts take a long time to be incorporated into the educational system, especially in developing countries. Amongst the main obstacles to the introduction of new cell biology concepts to students is their general lack of identification with most teaching methods. The introduction of elaborated figures, movies and animations to textbooks has given a tremendous contribution to the learning process and the search for novel teaching methods has been a central goal in cell biology education. Some specialized tools, however, are usually only available in advanced research centers or in institutions that are traditionally involved with the development of novel teaching/learning processes, and are far from becoming reality in the majority of life sciences schools. When combined with the known declining interest in science among young people, a critical scenario may result. This is especially important in the field of electron microscopy and associated techniques, methods that have greatly contributed to the current knowledge on the structure and function of different cell biology models but are rarely made accessible to most students. In this work, we propose a strategy to increase the engagement of students into the world of cell and structural biology by combining 3D electron microscopy techniques and 3D prototyping technology (3D printing) to generate 3D physical models that accurately and realistically reproduce a close-to-the native structure of the cell and serve as a tool for students and teachers outside the main centers. We introduce three strategies for 3D imaging, modeling and prototyping of cells and propose the establishment of a virtual platform where different digital models can be deposited by EM groups and subsequently downloaded and printed in different schools, universities, research centers and museums, thereby modernizing teaching of cell biology and increasing the accessibility to modern approaches in basic science.</p></div

    3D representation of the monocyte used on 3D printing.

    No full text
    <p>(A-F) Virtual sections from a serial tomogram of a monocyte obtained from serial electron tomography. Bar 2 ÎŒm. (G-I) 3D representation of the model, showing the cell nucleus (blue), plasma membrane (light pink), mitochondria (green), lysosomes (purple) and phagosomes (Orange).</p
    corecore