7,896 research outputs found

    The effect of aerosol on surface cloud radiative forcing in the Arctic

    No full text
    International audienceCloud radiative forcing is a very important concept to understand what kind of role the clouds play in climate change with thermal effect or albedo effect. In spite of that much progress has been achieved, the clouds are still poorly described in the climate models. Due to the complex aerosol-cloud-radiation interactions, high surface albedo of snow and ice cover, and without solar radiation in long period of the year, the Arctic strong warming caused by increasing greenhouse gases (as most GCMs suggested) has not been verified by the observations. In this study, we were dedicated to quantify the aerosol effect on the Arctic cloud radiative forcing by Northern Aerosol Regional Climate Model (NARCM). Major aerosol species such as Arctic haze sulphate, black carbon, sea salt, organics and dust have been included during our simulations. By inter-comparisons with the Atmospheric Radiation Measurement (ARM) data, we find surface cloud radiative forcing (SCRF) is ?22 W/m2 for shortwave and 36 W/m2 for longwave. Total cloud forcing is 14 W/m2 with minimum of ?35 W/m2 in early July. If aerosols are taken into account, the SCRF has been increased during winter while negative SCRF has been enhanced during summer. Our estimate of aerosol forcing is about ?6 W/m2 in the Arctic

    Active Brownian Motion Tunable by Light

    Get PDF
    Active Brownian particles are capable of taking up energy from their environment and converting it into directed motion; examples range from chemotactic cells and bacteria to artificial micro-swimmers. We have recently demonstrated that Janus particles, i.e. gold-capped colloidal spheres, suspended in a critical binary liquid mixture perform active Brownian motion when illuminated by light. In this article, we investigate in some more details their swimming mechanism leading to active Brownian motion. We show that the illumination-borne heating induces a local asymmetric demixing of the binary mixture generating a spatial chemical concentration gradient, which is responsible for the particle's self-diffusiophoretic motion. We study this effect as a function of the functionalization of the gold cap, the particle size and the illumination intensity: the functionalization determines what component of the binary mixture is preferentially adsorbed at the cap and the swimming direction (towards or away from the cap); the particle size determines the rotational diffusion and, therefore, the random reorientation of the particle; and the intensity tunes the strength of the heating and, therefore, of the motion. Finally, we harness this dependence of the swimming strength on the illumination intensity to investigate the behaviour of a micro-swimmer in a spatial light gradient, where its swimming properties are space-dependent

    An apodizing phase plate coronagraph for VLT/NACO

    Full text link
    We describe a coronagraphic optic for use with CONICA at the VLT that provides suppression of diffraction from 1.8 to 7 lambda/D at 4.05 microns, an optimal wavelength for direct imaging of cool extrasolar planets. The optic is designed to provide 10 magnitudes of contrast at 0.2 arcseconds, over a D-shaped region in the image plane, without the need for any focal plane occulting mask.Comment: 9 pages, 5 figures, to appear in Proc. SPIE Vol. 773

    Absolute Proper Motions to B~22.5: V. Detection of Sagittarius Dwarf Spheroidal Debris in the Direction of the Galactic Anticenter

    Full text link
    We have detected a population of predominantly blue (B-V <= 1.1) stars in the direction l = 167 deg., b = -35 deg. (Kapteyn Selected Area 71) that cannot be accounted for by standard starcount models. Down to V ~ 20, the colors and magnitudes of these stars are similar to those of the southern overdensity detected by the Sloan Digital Sky Survey, and identified as stripped material from the Sagittarius dwarf spheroidal galaxy. We present absolute proper motions for the stars in SA 71, and we find that the excess blue stars represent a distinct, kinematically cooler component than the Galactic field, and in reasonable agreement with predictions of Sgr disruption models. The density of the excess SA 71 stars at V ~ 18.8 and B-V <=1.1 is within a factor of two of the density of the SDSS-south Sgr stripped material, and of that predicted by the Helmi and White disruption model. Three additional anticenter fields (SA 29, 45 and 118) show very good agreement with standard starcount models.Comment: 13 pages, 3 figures, submitted to ApJL, accepted for Ap

    Heisenberg exchange in magnetic monoxides

    Full text link
    The superexchange intertacion in transition-metal oxides, proposed initially by Anderson in 1950, is treated using contemporary tight-binding theory and existing parameters. We find also a direct exchange for nearest-neighbor metal ions, larger by a factor of order five than the superexchange. This direct exchange arises from Vddm coupling, rather than overlap of atomic charge densities, a small overlap exchange contribution which we also estimate. For FeO and CoO there is also an important negative contribution, related to Stoner ferromagnetism, from the partially filled minority-spin band which broadens when ionic spins are aligned. The corresponding J1 and J2 parameters are calculated for MnO, FeO, CoO, and NiO. They give good accounts of the Neel and the Curie-Weiss temperatures, show appropriate trends, and give a reasonable account of their volume dependences. For MnO the predicted value for the magnetic susceptibility at the Neel temperature and the crystal distortion arising from the antiferromagnetic transition were reasonably well given. Application to CuO2 planes in the cuprates gives J=1220oK, compared to an experimental 1500oK, and for LiCrO2 gives J1=4 50oK compared to an experimental 230oK.Comment: 21 pages, 1 figure, submitted to Phys. Rev. B 1/19/07. Realized J=4V^2/U applies generally, as opposed to J=2V^2/U from one-electron theory (1/28 revision

    A Deep Proper-Motion Survey in Kapteyn Selected Areas: I. Survey Description and First Results for Stars in the Tidal Tail of Sagittarius and in the Monoceros Ring

    Get PDF
    We describe a high-precision, deep (to V ~ 19-21) absolute proper-motion survey that samples ~50 lines of sight in the Kapteyn Selected Areas along declination zones -15, 0 and 15 degrees. In many fields the astrometric baseline reaches nearly a century. We demonstrate that these data provide typical per star precisions between ~ 1 and 3 mas/yr to the above magnitude limits, with the absolute reference frame established by numerous extragalactic sources in each survey field. Combined with existing and ongoing photometric and radial velocity surveys in these fields, these astrometric data will enable, among other things, accurate, detailed dynamical modeling of satellite interactions with our Galaxy. In this contribution we describe the astrometric part of our survey and show preliminary results along the trailing tail of the Sagittarius dwarf galaxy, and in the Monoceros ring region.Comment: Accepter for publication in the Astronomical Journa

    A mid year comparison study of career satisfaction and emotional states between residents and faculty at one academic medical center

    Get PDF
    BACKGROUND: The Accreditation Council for Graduate Medical Education's (ACGME) new requirements raise multiple challenges for academic medical centers. We sought to evaluate career satisfaction, emotional states, positive and negative experiences, work hours and sleep among residents and faculty simultaneously in one academic medical center after implementation of the ACGME duty hour requirements. METHODS: Residents and faculty (1330) in the academic health center were asked to participate in a confidential survey; 72% of the residents and 66% of the faculty completed the survey. RESULTS: Compared to residents, faculty had higher levels of satisfaction with career choice, competence, importance and usefulness; lower levels of anxiousness and depression. The most positive experiences for both groups corresponded to strong interpersonal relationships and educational value; most negative experiences to poor interpersonal relationships and issues perceived outside of the physician's control. Approximately 13% of the residents and 14% of the faculty were out of compliance with duty hour requirements. Nearly 5% of faculty reported working more than 100 hours per week. For faculty who worked 24 hour shifts, nearly 60% were out of compliance with the duty-hour requirements. CONCLUSION: Reasons for increased satisfaction with career choice, positive emotional states and experiences for faculty compared to residents are unexplained. Earlier studies from this institution identified similar positive findings among advanced residents compared to more junior residents. Faculty are more frequently at risk for duty-hour violations. If patient safety is of prime importance, faculty, in particular, should be compliant with the duty hour requirements. Perhaps the ACGME should contain faculty work hours as part of its regulatory function

    Orbits of Globular Clusters in the Outer Galaxy: NGC 7006

    Get PDF
    We present a proper motion study of the distant globular cluster NGC 7006 based on the measurement of 25 photographic plates spanning a 40-year interval. The absolute proper motion determined with respect to extragalactic objects is (-0.96, -1.14) +- (0.35, 0.40) mas/yr. The total space velocity of NGC 7006 in a Galactocentric rest frame is 279 km/s, placing the cluster on one of the most energetic orbits (Ra =102 kpc) known to date for clusters within 40-kpc from the Galactic center. We compare the orbits of four clusters that have apocentric radii larger than 80 kpc (NGC 5466, NGC 6934, NGC 7006 and Pal 13) with those of Galactic satellites with well-measured proper motions. These clusters have orbits that are highly eccentric and of various inclinations with respect to the Galactic plane. In contrast, the orbits of the Galactic satellites are of low to moderate eccentricity and highly inclined. Based on orbit types, chemical abundances and cluster parameters, we discuss the properties of the hypothetical host systems of the remote globular clusters in the Searle-Zinn paradigm. It is apparent that clusters such as NGC 5466, NGC 6934 and NGC 7006 formed in systems that more likely resemble the Fornax dSph, rather than the Sagittarius dSph. We also discuss plausible causes for the difference found so far between the orbit type of outer halo clusters and that of Galactic satellites and for the tentative, yet suggestive phase-space scatter found among outer halo clusters.Comment: 27 pages, 5 figures, to be published in the Astronomical Journa
    corecore