5,370 research outputs found

    Searching for visual companions of close Cepheids. VLT/NACO lucky imaging of Y~Oph, FF~Aql, X~Sgr, W~Sgr and η\eta~Aql

    Full text link
    Aims: High-resolution imaging in several photometric bands can provide color and astrometric information of the wide-orbit component of Cepheid stars. Such measurements are needed to understand the age and evolution of pulsating stars. In addition, binary Cepheids have the potential to provide direct and model-independent distances and masses. Methods: We used the NAOS-CONICA adaptive optics instrument (NACO) in the near-infrared to perform a deep search for wide components around the classical Cepheids, Y~Oph, FF~Aql, X~Sgr, W~Sgr, and η\eta~Aql, within a field of view (FoV) of 1.7"×1.7"1.7"\times 1.7" (3.4"×3.4"3.4"\times 3.4" for η\eta~Aql). Results: We were able to reach contrast ΔH=5\Delta H = 5-8\,mag and ΔKs=4\Delta K_\mathrm{s} = 4-7\,mag in the radius range r>0.2"r > 0.2", which enabled us to constrain the presence of wide companions. For Y~Oph, FF~Aql, X~Sgr, W~Sgr, and η\eta~Aql at r>0.2"r > 0.2", we ruled out the presence of companions with a spectral type that is earlier than a B7V, A9V, A9V, A1V, and G5V star, respectively. For 0.1"<r<0.2"0.1"< r < 0.2", no companions earlier than O9V, B3V, B4V, B2V, and B2V star, respectively, are detected. A component is detected close to η\eta~Aql at projected separation ρ=654.7±0.9\rho = 654.7 \pm 0.9\,mas and a position angle PA=92.8±0.1∘PA = 92.8 \pm 0.1^\circ. We estimated its dereddened apparent magnitude to be mH0=9.34±0.04m_H^0 = 9.34 \pm 0.04 and derived a spectral type that ranges between an F1V and F6V star. Additional photometric and astrometric measurements are necessary to better constrain this star and check its physical association to the η\eta~Aql system.Comment: Accepted for publication in Astronomy and Astrophysic

    Imaging the symmetry breaking of molecular orbitals in carbon nanotubes

    Get PDF
    Carbon nanotubes have attracted considerable interest for their unique electronic properties. They are fascinating candidates for fundamental studies of one dimensional materials as well as for future molecular electronics applications. The molecular orbitals of nanotubes are of particular importance as they govern the transport properties and the chemical reactivity of the system. Here we show for the first time a complete experimental investigation of molecular orbitals of single wall carbon nanotubes using atomically resolved scanning tunneling spectroscopy. Local conductance measurements show spectacular carbon-carbon bond asymmetry at the Van Hove singularities for both semiconducting and metallic tubes, demonstrating the symmetry breaking of molecular orbitals in nanotubes. Whatever the tube, only two types of complementary orbitals are alternatively observed. An analytical tight-binding model describing the interference patterns of ? orbitals confirmed by ab initio calculations, perfectly reproduces the experimental results

    Polarization state of the optical near-field

    Full text link
    The polarization state of the optical electromagnetic field lying several nanometers above complex dielectric structures reveals the intricate light-matter interaction that occurs in this near-field zone. This information can only be extracted from an analysis of the polarization state of the detected light in the near-field. These polarization states can be calculated by different numerical methods well-suited to near--field optics. In this paper, we apply two different techniques (Localized Green Function Method and Differential Theory of Gratings) to separate each polarisation component associated with both electric and magnetic optical near-fields produced by nanometer sized objects. The analysis is carried out in two stages: in the first stage, we use a simple dipolar model to achieve insight into the physical origin of the near-field polarization state. In the second stage, we calculate accurate numerical field maps, simulating experimental near-field light detection, to supplement the data produced by analytical models. We conclude this study by demonstrating the role played by the near-field polarization in the formation of the local density of states.Comment: 9 pages, 11 figures, accepted for publication in Phys. Rev.

    The near-infrared spectral energy distribution of {\beta} Pictoris b

    Full text link
    A gas giant planet has previously been directly seen orbiting at 8-10 AU within the debris disk of the ~12 Myr old star {\beta} Pictoris. The {\beta} Pictoris system offers the rare opportunity to study the physical and atmospheric properties of an exoplanet placed on a wide orbit and to establish its formation scenario. We obtained J (1.265 {\mu}m), H (1.66 {\mu}m), and M' (4.78 {\mu}m) band angular differential imaging of the system between 2011 and 2012. We detect the planetary companion in our four-epoch observations. We estimate J = 14.0 +- 0.3, H = 13.5 +- 0.2, and M' = 11.0 +- 0.3 mag. Our new astrometry consolidates previous semi-major axis (sma=8-10 AU) and excentricity (e <= 0.15) estimates of the planet. These constraints, and those derived from radial velocities of the star provides independent upper limits on the mass of {\beta} Pictoris b of 12 and 15.5 MJup for semi-major axis of 9 and 10 AU. The location of {\beta} Pictoris b in color-magnitude diagrams suggests it has spectroscopic properties similar to L0-L4 dwarfs. This enables to derive Log10(L/Lsun) = -3.87 +- 0.08 for the companion. The analysis with 7 PHOENIX-based atmospheric models reveals the planet has a dusty atmosphere with Teff = 1700 +- 100 K and log g = 4.0+- 0.5. "Hot-start" evolutionary models give a new mass of 10+3-2 MJup from Teff and 9+3-2 MJup from luminosity. Predictions of "cold-start" models are inconsistent with independent constraints on the planet mass. "Warm-start" models constrain the mass to M >= 6MJup and the initial entropies to values (Sinit >= 9.3Kb/baryon), intermediate between those considered for cold/hot-start models, but likely closer to those of hot-start models.Comment: 19 pages, accepted in Astronomy and Astrophysic

    On the direct search for spin-dependent WIMP interactions

    Full text link
    We examine the current directions in the search for spin-dependent dark matter. We discover that, with few exceptions, the search activity is concentrated towards constraints on the WIMP-neutron spin coupling, with significantly less impact in the WIMP-proton sector. We review the situation of those experiments with WIMP-proton spin sensitivity, toward identifying those capable of reestablishing the balance.Comment: 7 pages, 4 figure

    Local Surface Density of the Galactic Disk from a 3-D Stellar Velocity Sample

    Full text link
    We have re-estimated the surface density of the Galactic disk in the solar neighborhood within ±\pm 0.4 kpc of the Sun using parallaxes and proper motions of a kinematically and spatially unbiased sample of 1476 old bright red giant stars from the Hipparcos catalog with measured radial velocities from Barbier-Brossat & Figon (2000). We determine the vertical distribution of the red giants as well as the vertical velocity dispersion of the sample, (14.4 ±\pm 0.26 km/sec), and combine these to derive the surface density of gravitating matter in the Galactic disk as a function of the galactic coordinate zz. The surface density of the disk increases from 10.5 ±\pm 0.5 M⊙M_{\odot} / pc2^2 within ±\pm 50 pc to 42 ±\pm 6 M⊙M_{\odot} / pc2^2 within ±\pm 350 pc. The estimated volume density of the galactic disk within ±\pm 50 pc is about 0.1 M⊙M_{\odot} / pc3^3 which is close to the volume density estimates of the observed baryonic matter in the solar neighborhood.Comment: 24 pages, 15 figures, AJ in pres

    Classical and Intuitionistic Subexponential Logics are Equally Expressive

    Get PDF
    International audienceIt is standard to regard the intuitionistic restriction of a classical logic as increasing the expressivity of the logic because the classical logic can be adequately represented in the intuitionistic logic by double-negation, while the other direction has no truth-preserving propositional encodings. We show here that subexponential logic, which is a family of substructural refinements of classical logic, each parametric over a preorder over the subexponential connectives, does not suffer from this asymmetry if the preorder is systematically modified as part of the encoding. Precisely, we show a bijection between synthetic (i.e., focused) partial sequent derivations modulo a given encoding. Particular instances of our encoding for particular subexponential preorders give rise to both known and novel adequacy theorems for substructural logics

    Discovery of a probable 4-5 Jupiter-mass exoplanet to HD 95086 by direct-imaging

    Get PDF
    Direct imaging has just started the inventory of the population of gas giant planets on wide-orbits around young stars in the solar neighborhood. Following this approach, we carried out a deep imaging survey in the near-infrared using VLT/NaCo to search for substellar companions. We report here the discovery in L' (3.8 microns) images of a probable companion orbiting at 56 AU the young (10-17 Myr), dusty, and early-type (A8) star HD 95086. This discovery is based on observations with more than a year-time-lapse. Our first epoch clearly revealed the source at 10 sigma while our second epoch lacked good observing conditions hence yielding a 3 sigma detection. Various tests were thus made to rule out possible artifacts. This recovery is consistent with the signal at the first epoch but requires cleaner confirmation. Nevertheless, our astrometric precision suggests the companion to be comoving with the star, with a 3 sigma confidence level. The planetary nature of the source is reinforced by a non-detection in Ks-band (2.18 microns) images according to its possible extremely red Ks - L' color. Conversely, background contamination is rejected with good confidence level. The luminosity yields a predicted mass of about 4-5MJup (at 10-17 Myr) using "hot-start" evolutionary models, making HD 95086 b the exoplanet with the lowest mass ever imaged around a star.Comment: accepted for publication to APJ

    Magnetic Pinning of Vortices in a Superconducting Film: The (anti)vortex-magnetic dipole interaction energy in the London approximation

    Full text link
    The interaction between a superconducting vortex or antivortex in a superconducting film and a magnetic dipole with in- or out-of-plane magnetization is investigated within the London approximation. The dependence of the interaction energy on the dipole-vortex distance and the film thickness is studied and analytical results are obtained in limiting cases. We show how the short range interaction with the magnetic dipole makes the co-existence of vortices and antivortices possible. Different configurations with vortices and antivortices are investigated.Comment: 12 pages, 12 figures. Submitted to Phys. Rev.
    • 

    corecore