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Classical and Intuitionistic Subexponential Logics
are Equally Expressive

Kaustuv Chaudhuri

INRIA Saclay, France
kaustuv.chaudhuri@inria. fr

Abstract. It is standard to regard the intuitionistic restriction aflassical logic
as increasing the expressivity of the logic because thsickidogic can be ade-
quately represented in the intuitionistic logic by doubkgation, while the other
direction has no truth-preserving propositional encosling/e show here that
subexponential logic, which is a family of substructurdirrements of classi-
cal logic, each parametric over a preorder over the subexyi@h connectives,
does not sfier from this asymmetry if the preorder is systematically ified as
part of the encoding. Precisely, we show a bijection betvserthetic (i.e., fo-
cused) partial sequent derivations modulo a given encodiagicular instances
of our encoding for particular subexponential preordeve gise to both known
and novel adequacy theorems for substructural logics.

1 Introduction

In [E], Miller writes:

“While there is some recognition that logic is a unifying andiversal disci-
pline underlying computer science, it is far more accuratsay that its uni-
versal character has been badly fractured ... one wondedleif is any sense
to insisting that there is a core notion of ‘logic’”
Possibly the oldest such split is along the clasgialitionistic seam, and each side
can be seen as more universal than the other. Classicas)digeedomain of traditional
mathematics, generally have an elegant symmetry in theemives that can often
be exploited to create sophisticated proof search and nabaking algorithms. On
the other hand, intuitionistic logics, which introduce aymmetry between multiple
hypotheses and single conclusions, can express the catiopatanotion offunction
directly, making it the preferred choice for programmingdaages and logical frame-
works. Can the rift between these two sides be bridged?
Miller proposes one approach: to use structural proof themarticularly the proof
theory of focused sequent calculi, as a unifying languag#fgical formalisms. There
is an important proof theoretic filerence between a given classical logic andrits
tuitionistic restriction(see defn[|8): the classical formulas can be encoded usieng th
intuitionistic connectives in such a way that classicalvatility is preservedi.e., a
formula is classically provable if and only if its encodirggimtuitionistically provable.
In the other direction, however, there are no such genecaldings. The classical logic



will either have to be extended (for example, with terms amaljifiers) or refined with
substructural or modal operators. For this reason, iohigiic logics are sometimes
considered to bemore expressivthan their classical counterparts.

In this paper, we compare logical calculi for “universdliging the specific techni-
cal apparatus addequate propositional encodingghat is, given a formula in a source
logic O, we must be able to encode it in a target lolyichat must preserve the atomic
predicates and must reuse the reasoning principl&s @iarticularly its notion of prov-
ability. An example of such an encoding would be ordinargsieal logic encoded in
ordinary intuitionistic logic where each classical formélis encoded as the intuition-
istic formula--A. We can go further and also reuse the proofs of the targailcatdn
fact, there are at least the followiteyelsof adequacy:

Definition 1 (levels of adequacy)An encoding of formulas (equiv. of sequents) from a
source to a target calculus is

— globally adequaté a formula is true (equiv. a sequent is derivable) in therseu
calculus ffits encoding is true (equiv. the encoding of the sequentrisalde) in
the target calculus;

— adequatéf the proofs of a formula (equiv. a sequent) in the sourcewals are in
bijection with the proofs of the encoding of the formula (egihe sequent) in the
target calculus; and

— locally adequatef open derivations (i.e., partial proofs with possibly woped
premises) of a formula (equiv. a sequent) in the source tadcare in bijection
with the open derivations of the formula (equiv. the sequarhe target calculus.

Local adequacy is an ideal for encodings because it is agsfustification for see-
ing the target calculus as more universal: (partial) praothe source calculus can be
recovered at any level of detail. However, it is unachiegaxcept in trivial situations.
Indeed, even adequacy is ofterftiult; for instance, the linear formula - 'b — !a
has three sequent proofsfidring in the order in which the second and the two !s
are introduced, but there is only a single sequent proafob > a.

It is nevertheless possible to define a kind of local adeqtiaal is more flexi-
ble: adequacy up to permutations of inference rules entirgide one of the phases
of focusing A focused proof |ﬂ1] is a proof that makes larggntheticrules that are
maximal chains of positive or negative inference rules. Afielience rule is positive,
sometimes called synchronous, if it involves an esserttiaice, while it is negative or
asynchronous if the choices it presents (if any) are indsdemhe term “focus” de-
scribes the way positive inferences are chained to formhgjiut steps: each inference
is applied (read from conclusion to premises) to a singlmfdaunder focusand the
operands of this connective remain under focus in the pesnis

Definition 2 (focal adequacy) An encoding of sequents from a source to a target fo-
cused calculus ifocally adequaté they have the same synthetic inference rules.

Since focusing abstracts away the inessential permutatibimference rules, a fo-
cally adequate encoding can be used to compare logics feenéal universality”.
Surprisingly, there are very few known focal adequacy tegske[[{,31] for practically



all such known results). This paper fills in many of the gapseikisting (substruc-
tural) logics by proving a pair of general encodings (seettas[ 1R and 17) about
subexponentidbgics ]. It is well known that the exponentials of lardogic are
non-canonical. If a pre-order is imposed upon them withadlét conditions, then the
resulting logic is well-behaved, satisfying identity, atting cuts, and allowing focus-
ing. Moreover, classical, intuitionistic, and linear logican be seen asstancesof
subexponential logic for particular collections of subesgntials. Our encodings are
generig parametric on theubexponential signatui the source and target logics. As
particular instances, we obtain focal adequacy resultsctassical logic (CL) in in-
tuitionistic logic (IL), IL in classical linear logic (CLL)CLL in intuitionistic linear
logic (ILL), and an indefinite bidirectional chain betweeassical and intuitionistic
subexponential logics, all of which are novel. Moreover, encodings show that any
analysis (such as cut-elimination) or algorithm (such a®psearch) that is generic on
the subexponential signature cannot (aeed nox distinguish between classical and
intuitionistic logics.

The rest of this paper is organized as follows: in Ehc. 2 idaksubexponential logic
is introduced, together with its focused sequent calcuhgsveell known instances; in
sec[B its intuitionistic restriction is presented; thesée [} the bidirectional encoding
between classical and intuitionistic subexponentialdagconstructed. Details omitted
here for space reasons can be found in the accompanyingdatteport []S].

2 Classical subexponential logic

Subexponential logic borrows most of its syntax from linkegjic [E]. As we are com-
paring focused systems, we adopt a polarised syntax froipahi@ning. Polarised for-
mulas will have exactly one of two polaritiggositive(P, Q, . ..) constructed out of the
positive atoms and connectives, amjative(N, M, . . .) constructed out of the negative
atoms and connectives. These two classes of formulas ataltyuecursive, mediated
by the indexed subexponential operatgrard ?2.

Notation 3 (syntax) Positive formulagP, Q) and negative formulagN, M) have the
following grammar:

PQ:=p|P®Q|1|P®Q|O|!,N" (positive)
NNM:=n|N&M |T|N®M|L|[P-oN|?P (negative)

Atomic formulas are written in lower case,(@. . .), with p and q reserved for positive
and n and m reserved for negative atomic formulasdenotes either a positive formula
or a negative atom, and likewise'NMlenotes a negative formula or a positive atom. We
write A B, ... for any arbitrary formula (positive or negative).

Because we will eventually consider its intuitionistictreetion, we retain implication
—o as a primitive even though it is classically definable. Hogrewe exclude the non-
linear implication ©) because the unrestricted zones are non-canomieakhere are
many such implications, each defined using a suitable sulexyial (or compositions
thereof). The subscrigtin exponential connectives denotes zones drawn freobax-
ponential signaturgusing the terminology of [15]).



Definition 4 A subexponential signatuggis a structure(Z, <, 1, U) where:

— (Z,<)is anon-empty pre-ordered set (the “zones”);

— L€ Zis a"“working’ zone;

— U ¢ Z is a set ofunrestrictedzones that is<-closed, i.e., for every;zz, € Z, if
7z < 2, then 2 € U implies 2 € U. Z\ U will be called therestrictedzones.

We use wv, w to denote unrestricted zones and, it to denote restricted zones.

Unrestricted zones admit both weakening and contractidriewestricted zones
are linear. The logic is parametric on the signature. (Baler mentions of the signature
will be omitted unless necessary to disambiguate, in whadethey will be written in
a subscript.) We use use a two-sided sequent calculus fatimibof the logic in order
to avoid appeals to De Morgan duality. This will not only siifipthe definition of the
intuitionistic restriction (seq.| 3), but will also be cratito the main adequacy result.
Formulas in contexts are annotated with their subexpoalertines as followsz: A
will stand for A occurring in zone denoted layandz: (Ay, ..., A) forz: Ay, ..., z: Ax.
Sequents are of the following kinds:

Cr[P]; A right focus onP
I'; [N]JFA left focus onN
I'; QrE; A active onQ and=
The contexts in these sequents have the following resinisti

— All elements of thdeft passivecontextl” are of the fornz: N*.
— All elements of theight passivecontextA are of the forne: P~.
— All elements of thdeft activecontextQ are of the fornP~.

— All elements of theight activecontext= are of the formiN™*.

Notation 5 We writeI™ or A" for those contexts containing only unrestricted elements,
i.e., each elementis of the form A with ue U. Likewise, we writ&™ or A" for contexts
containing only restricted elements.

The rules of the calculus are presented inﬁg. 1. Focuseckesegalculi presented
in this style, which is a stylistic variant of Andreoli’s gihal formulation [H, have an
intensional reading in terms pghasesAt the boundaries of phases are sequents of the
formT ; - + - ; A, which are known aseutral sequentsProofs of neutral sequents
proceed (reading from conclusion to premises) as follows:

1. Decision afocusis selected from a neutral sequent, either from the lefteright
context. This focused formula is moved to its correspontbngsed zone using one
of the ruleskor, ubr, roL. andupt (u/r = “unrestricted/“restricted”,o = “decision”,
andr/L = “right” /“left”). Thesedecisiorrules copy the focused formull it occurs
in an unrestricted zone.

2. Focused phasdor a left or a right focused sequent, left or right focusesibre
applied to the formula under focus. These focused ruleslamerinvertible in the
(unfocused) sequent calculus and therefore depend ontieésbioices made in the
proof. In all cases excepie and 2. the focus persists to the subformulas (if any)



(right focus)
I F[P] S A AL T T [Q] 5 A A,

', z:pr[p]; A" h "I, Fr[PeQ]; AYALA, RO [1] ; A" Ir
T+[P]; A I'; - FNY; A (Vx:Ael’,A.zgx)|
Tr[Pi@Ps]; A Tr LN A =
(left focus)
r:[P]rA LTS IN] R AY AL T TS5 [M] R AY A
T [ FALzin T [Pi&PJrACH T T3 TS [N M] - A%, AL AL L
B I[Pl AL AL T T, [M]FAY A, oL
I [L] A [T, T [P— M] - A AL AL
I';Pr-; A (YXiAeTl,Az< x),)
I;[2P]+A k
(right active)

I'; Qr=Z; Al:a I' QFrEN; A T, QrE M; A
F;QFE,a;AAR I' QFrEN&M; A &r F;QFE,T;ATR
I'; QrE,N,M; A I' QrZ; A I'; QPFEN; A I'; QrZE; Az P
— R — 1R — —oR — — 7R
I' QFEN®M; A I' QrZ=,1; A I' QrZ,P—-oN; A I' QrZ,2P ; A

(left active)
l",I:a;QrE;AAL F;Q,P,QFE;A® I'; QrZ; A
L
I'; Qarz=Z; A I' QPQrE; A I'; Q1+=2; A
'y QPFE; A T;QQKE; A IzzN"; Q+rZE; A

|
[ QP&QrE; A o aorE A® T o NrE A"

1o

(decision)

Cr[P]; A . Tr[P]; Au:P [; [NIFA 1“,u:N;[N]FAUDL
r; -+, Ar:P r;-+-; Au:P LLr:Ns -5 A LLu:N; -5 A

Fig. 1. Focused sequent calculus for classical subexponential log



of the focused formula. For binary rules, the restrictedipos of the contexts are
separated and distributed to the two premises. This mudhidhe familiar from
focusing for linear logic([{]7].

The two unusual rules for subexponential logic arednd 2., which are gener-
alizations of rules for the single exponential in ordindnehr logic. These rules
have a side condition that no formulas in a stricthsmaller zone may be present
in the conclusion. If the working zoriés <-minimal (which is not necessarily the
case), then this side condition is trivial and the rules améo a pure change of
polarities, similar to thg and| connectives of polarised linear IogiE[lO]. For the
other zones, this rule tests for the emptiness of some ofthe It is this selective
emptiness test that gives subexponential logic its exjweepswer [1H,14].

3. Active phaseonce the exponential rulesk!and 2. are applied, the sequents be-
come active and left and right active rules are applied. Tderoof the active rules
is immaterial as all orderings will produce the same list@ditnal sequent premises.
In Andreoli’'s system the irrelevant non-determinism in ¢cinéer of these rules was
removed by treating the active conte®andQ as ordered contexts; however, we
do not fix any particular ordering.

In the traditional model of focusing, the above three stepeat, in that order, in
the entire proof. The focused system can therefore be seansgstem ofsynthetic
inference rules (sometimes knownkdpoleg for neutral sequents. It is possible to give
a very general presentation of such synthetic inferendesyss for which we can prove
completeness and cut-elimination in a very general fas[ﬁprit is also possible, with
some non-trivial &ort, to show completeness of the focused calculus withguealing
to synthetic rules[lﬂl]. We do not delve into such proofthis paper because this
ground is well trodden. Indeed, a focused completenessahefor a very similar (but
more general) formulation of subexponential logic can hantbin [14, chapter 6]. The
synthetic soundness and completeness theorems are assfgiimof omitted:

Fact 6 (synthetic soundness and completenes¥yrite - for the sequent arrow for an
unfocused variant of the calculus of fﬂ; 1, obtained by plg¢he focused and active
formulas in the zone and relaxing the focusing disciplﬂ1e.

1. IfT"; -+ -; A, thenl' - A (synthetic soundness).
2. fT,:Qr 1:E,Athenl’; Q+ Z; A (synthetic completeness). O

Despite its somewhat esoteric formulation, it is easy to lsme subexponential
logic generalizes classical substructural logics.

Fact 7 (familiar instances)

— Polarised classical multiplicative additive linear logMALL) is determined by
mall = ({1},-,1,0). The injections between the two polarised classes, sometim
known asshifts are as follows:| = !; andT= 7.

1 This is basically Gentzen's LK in two-sided form for suberpatial logic.



— Polarised classical linear log{€LL) is determined by1 = ({Lu}, I < 1,1, {u}). In
addition to the injections afall, we also have the exponentials !, and? = 2,.
— Polarised classical logi€CL) is given by the signature= ({1}, -, [, {I}). O

In addition to such instances produced by instantiatingtibexponential signature,
it is also possible to get the unpolarised versions of thegies by applying,!and ?to
immediate negative (resp. positive) subformulas of pasitiesp. negative) formulas.

3 Intuitionistic subexponential logic

One direct way of defining intuitionistic fragments of cligss logics is as follows:

Definition 8 (intuitionistic restriction) Given a two-sided sequent calculus, iit$u-
itionistic restrictionis that fragment where all inference rules are constrainethave
exactly a single formula on the right hand sides of sequents.

The practical import of this restriction is that the conmext? and L disappear,
because their right rules require two and zero conclusimspectively. As a result,
— becomes a primitive because its classical definition regd (and De Morgan
duals, which are also missing with the intuitioistic residn). In a slight break from
tradition [3[1B[R], we retain,an the intuitionistic syntax. The intuitionistic restrioh
produces the following kinds of sequents:

'+ [P] right focus onP
I'; [NJFz:Q left focus onN
r'; QrN*; - active onQ andN*

I'; Qr-; z:Q° active onQ
We shall usey to stand for the right hand forms—eithidt ; - or - ; z: Q"—for active
sequents above. The full collection of rules is given in |f|gA2 before, we us€~
(resp.N7) to refer to a positive formula or negative atom (resp. negdbrmula or
positive atom).

The nature of subexponential signatures does not changaimgifrom classical to
intuitionistic logic. The decision ruleor obviously cannot copy the right formulain the
intuitionistic case. Thus, both the right decision rulebaguse; 2 takes on an additional
modal aspect and is no longer the perfect dual,of he standard explanation of this
loss of symmetry in the exponentials is the creation of a pesgsibilityjudgement that
is weaker than linear truth; seE [3] for such a reconstraatiche intuitionistic ?.

The proof of completeness for focused intuitionistic syfmmential logic has never
been published. However, any similar proof for intuitidigéinear logic, such ag][f,11],
can be adapted. Again, we simply state the synthetic vedditite theorems here with-
out proof.

Fact 9 (synthetic soundness and completenes¥yrite - for the sequent arrow for an
unfocused variant of the calculus of fﬂ; 2, obtained by plg¢he focused and active
formulas in the zone and relaxing the focusing discipline.

1. fT; -r-; 2:Q ,thenl'+z: Q™.



(right focus)

T H[P] T TS+ [Q
zprlp = TLILILF[PeQ] % TVr[d]

T+ [P] [;-FN7; - (YxAelz<X)
R; -
TH[Pi@P] T+ [1,N'] *

(left focus)

r;[Plrz:Q . rir[Pl TT, [M]Fz:Q*_O

Tofrzn . T, [Pi&PlrziQ o T ILILIG; [PoM]F2:Q
I Pry:Q (VX Ael,y:Q.z< X),>
Py Q

right active

I' Qr-; 1:a I' QrkN; - T';QrM; - T
F;QrapAR I' QFkN&M; - R I'; QrT1T; - R

r, QPFN; - r,Qr-;z:P
—oR ?
' QrP—oN; - r; Qr2,P; -

R

(left active)
Ii:a; Qry I, Q. PRQry r;Qry
r; Qary AL I QPQ+y - r; Q1ry
Iy QPry T;QQry 1",2:N;szI

I'; QPaQry oL F;Q,OFyOL F;Q,!ZNky'ZL

1o

(decision)

'k [P] bR I'; [NJFz:Q DL ILu:N; [N]FZ:Q*UDL
r;-+-;z:P LLr:N; -F-; 2:Q Lu:N; -+-; 2:Q

Fig. 2. Focused sequent calculus for intuitionstic subexpondotiic

L



2. fT,1:Qrz:Q thenl'; Q+r-; 2:Q".
3. fTL:QrI:Nthen; Q+ N ; - O

The intuitionstic restrictions of the familiar instancesrh defn.D? simply use the same
subexponential signatures.

4 Focally adequate encodings

This section contains the main technical contribution of feper: focally adequate
encodings (defr|] 2) that are generic on subexponentiahgiges. At the level of focal

adequacy, therefore, the asymmetry in the expressive pofrgassical and intuition-

istic logics disappears.

4.1 Classical in intuitionistic

To introduce the mechanisms of encoding, we first look at tisutprising direction:
a classical logic in its own intuitionistic restriction. &well known double negation
translation, if performed clumsily, can break even full qulacy. For example, ¥ 2 M

is translated as:(!,—=!\N ® !\=!{M) where-P = P — k wherek is some fixed negative
atom that is not used in classical logic. In the resle under this encoding, there are
instances of !that have no counterpart in the classical side. Indeed flkaro derived
rule in the classical focused calculus that allows one tckmel ; - + N® M ; -
fromT ; - + -; 4N, M, which is what would result if the active phase could be sus-
pended arbitrarily and the subformula property were diear Such a rule is certainly
admissible, but admissibile rules do not preserve bijestibetween proofs, and are
only definable for full proofs in any case.

How does one encode classical logic in its intuitionistigtietion such that polar-
ities are respected? The above example suggests an obwiswerawhen translating
N 2 M as if it were right-active, do not also translate the subfdesM andN as if
they were right-active, for they will be sent to the left. teesd, translate them as if they
wereleft-activef]

Definition 10 (encoding classical formulas)

— The encoding-)~ from classical positive (resp. negative) formulas to ititunistic
positive (resp. negative) formulas is as follows:

(M~ =p (N =N (PeQ =(P)7e(@Q” @ =1
(PeQ =P e(Q" 0" =0 (N)™==(N)*

— The encoding-)* from classical negative (resp. positive) formulas to itituristic
positive (resp. negative) formulas is as follows:

(n)* =n* (%P)"=1(P" (N®N)"=(N"®(M)" (1)"=1
(N&M)”=(No(M)” (T)"=0 (P—oN’=P) &N (P =-(P)

where for every negative atom n, there is a positive atérmrihe encoding.

2 The astute reader might recall that this is the essence afdé@s encodings.



Contexts are translated element-wise.

Definition 11 (encoding classical sequentsyhe encoding—)** of classical sequents as
intuitionistic sequents is as follows:

T+ [P]; A = (@)=, (A) F [(PF] (T; [N] F A = (D)7, (A + [(N)*]
T; QrE; A =07, ; (@°.@)F-; Lk

In other words, focused sequents are translated to rightskd sequents, and ac-
tive sequents to left-active sequents. The right contextslaalised and sent to the left
where the intuitionistic restriction does not apply, whhe left focus on negative for-
mulas is turned into a right focus because of the lack of aipligiative left-focused
rule (exceptor which would cause an inadvertent polarity switch).

Theorem 12 The encoding of deffi. 11 is focally adequate (dgfn. 2).

Proof. We will inventory the classical rules in fi. 1, and in eachecasmpute the intu-
itionistic synthetic derivations of the encoding of the clusion of the classical rules.
Here are the interestifjcases, with the double inference lines denoting (un)fadin
of defns.[Ip and 31, and the rule names written with the prgfor i/ to distinguish
between classical and intuitionistic respectively.

— cases ot/pr andc/!r :
T;-FN; A
(D)7, (A) 3 (N r - Lk

O~y ; (N + k --

0@ ;=N ;f’
™z Ay D)7, () F [t (N7
™). (z:p~. (A" + [p] (D)7, (A) F[(1N)T]
T, z:pr[p] ; A (T F[1N] 5 A

All the logical rules used are invertible. The boxed ins&an€y/?r requires some
explanation: obviously a left active rule ¢N)* can be applied before this rule.
However, since they are both active rules, the choice of wtacperform first is
immaterial as they will produce the same neutral premigese lwant local—not
focal—adequacy, we will have to impose a right-to-left aidg on the active rules.
The case of/NL andc/?L is similar.
— case ok/®r :
T; QFrEN,M; A
O~ A 5 @ E)L.(N", (M) k-5 LK
0.0 @@ () oMy r; k"
O~ ;@ .E ) .(N®M) +-; 11k
T; QFE,N®M; A
The cases af/ LR, ¢/!,L. andc/?,r are similar.

3 See [b] for the remaining cases.



— case Oft/rDR :

(rT5 - P15 Ay Ay

- Z Z 1/NL
(rry) (AR ay) v 1T (r) . (a) LI
_ z I/—L
(. 15) . (AL AY) 5 [~ (P + 10k

(To.T) L (AL AY) ri=(PY s -k Tk

I/RDL

(Te.T5) L (ALAY) (P k- ik

(T0T5: ko ALALT:P)

Note that the right premise is forced to terminate in the spheese. This would

not be possible if, instead &f we were to use some other negative formula such as

?,0. In the presence of some unrestricted subexponantieé might have used,@
instead (note that, classically,0?= 1). O

Corollary 13

— There is a focally adequate encoding of classical MALL initicnistic MALL.
— There is a focally adequate encoding of CLL in ILL.
— There is a focally adequate encoding of CL in IL.

Proof. Instantiate thm[ 32 on the subexponential signatures freim.§ . m|

These instances are all apparently novel, partly becaussd &mlequacy of classical
logics in their own intuitionistic restrictions has not megeeply investigated. In the
work on LJF ] there is a focally adequate encoding of ita$$ogic in intuitionistic
linear logic, which can be seen as a combination of the seaoddhird of the above
instances.

4.2 Intuitionistic in classical

The previous subsection showed that the intuitionistitrie®n of a classical logic can
adequately encode the classical logic itself. This is netdéise in the other direction
without further modifications to the subexponential signat It is easy to see this:
consider just the MALL fragment and the problem of encodimgit—r rule. If — is
encoded as itself, then in the classical side we have thewit derived rule (all the
zones aré, and elided):

FH[P; Q T [NIF-
I';[PoN]rQ

This rule has no intuitionistic counterpart. Therefore #mcoding of- must prevent

the right formulaQ~ from being sent to the left branche., to test that the rest of the
right context in a right focus is empty. MALL itself cannotrf@m this test because it
lacks any truly modal operators. Exactly the same probleistefor the encoding of
IL in CL, which also lacks any true modal operators.



Quite obviously, the encoding e requires some means of testing the emptiness
of contexts. CLL (defrﬂ?) has an additional zorthat is greater thah and therefore,!
can test for the absence of arfprmulas. It turns out that this is enough to get a focally
adequate encoding of IL as follows: the sole zdoglL is split into two, I, (restricted)
andl, (unrestricted), and the right hand side of IL sequents i®éed withl;. Then,
wheneverP is of the form [N, the translation of it on the right is of the formM. In
the rest of this subsection, we will systematically extdrisl bbservation to an arbitrary
subexponential signature.

Definition 14 (signature splitting) Let a subexponential signatue= (Z, <,1,U) be
given. Write:

— Z for the zone sdZ x {1}) U (Z x {r}), wherel andr are distinct labels for the left
and the right of the sequents, respectively, and the Cartesian product. % {1}
will be called theleft form of Z, and Zx {r} will be called itsright form.

— U for the unrestricted zone set ¥J{1}.

— Tfor the working zongl, 1).

— < for the smallest relation o# x Z for which:

- (x1)<W1)ifx<y;
- (x,r)<(y.r)if x<y; and
— (1)< (x 1) and(x,1) Z (X, r).
The subexponential signatufe= (Z, £, 1, U) will be called thesplit formof <.

We intend to treat the right form specially. The zones in thktrform are restricted,
which encodes the linearity of the right hand side inhererihé intuitionistic restric-
tion (defn.|]3). Our encoding will guarantee that the rightdhaides of sequents in the
encoding contain no zones in the left form. Thus, whepN is under right focus, the
side condition on ther! rule will ensure that there are no other formulas on the right
hand side, because the right forms are made pointwise gritadletheir left forms. Du-
ally, on the left we shall use;2, to encode 2 since the right form zones are pointwise

smaller than the left form zones, but retain the pre-sptieang inside their own zone,
the side conditions enforce the same occurrences as in tinesscalculus.

Definition 15 (encoding intuitionistic contexts)
— The left-passive contektis encoded pointwise using the translaties)®:
NP = (21): (N)? (M =p (N)*® = (N)*
— A left-focused formula N is encoded using the translatiop?®:
MF=n (2P =2 (P)*  (N&MPF = (N & (M () =T
(P — N)* = (P)** — (N)*
— Aright-focused formula P is encoded using the translagioyit:

PF=p (N =legy(N)* (PeQ™ =P (@™ =1
(PoQ™ =Py e(@Q™ (0"=0



— A left-active contex® is encoded pointwise using the translatien!?:
@@ =!wma (N =leg(N)? (PeQ =P e (@ (D=1
PeQ*=(P)“e(Q" (0*=0
— Aright-active formula N is encoded using the translatign)*:
@2 =lma  (ZP)* =2 (P)P (N& M)™ = (N & (M) (T)*=T
(P— N)™ = (P)"* — (N)™
— Aright-passive zoned formula P~ is encoded using the translati¢r)™®:
(z:P)? =(z1): (P)” (M™=n Py = (P)*

The cases foft ,N*)*f and(?2,P~)'* will be crucial for the proof of thn{. 17. Most of the
remaining cases can be seen as an abstract interpretatiba fifcused rules (figﬂ 2)
on the various contexts. The definition of the encoding afitienistic sequents is now
completely systematic.

Definition 16 (encoding intuitionistic sequents)The encoding-)' of intuitionistic se-
guents as classical sequents is as follows:

T F[P)” =" F [Py ;- 5 INFZ2 Q)" =)™ ; [N+ @z Q)™
T; QN ) =MP; @2 (N2 ;- T;QF-;22Q) " =Y ; ®2F-; Q)™
Observe that the right hand sides of the encoding have théidmtistic restriction
(defn.@). This restriction will be enforced at every tramstfrom a focused to an active

phase, which is enough because the active rules cannotsecthe size of the right
contexts.

Theorem 17 The encoding of defii. ]16 is focally adequate (dgfn. 2).

Proof. As before for thmEIZ, we shall prove this by inventoryingithtaitionistic rules
of fig. B, encode the conclusions of each of these rules, aserebwhether the neutral
premises of the derived inference rules are in bijectiot wibse of the figﬂZ. All but
the following important cases are omitted here for spacsores

— cases of/er andy/! & :

2?1

(T; N5 97
0P ;- F (N
- Um T o ¢/'r
P zpripl” 7 [l )] (o]
T, @™ (] (O kN 5
(,z:pr [p)” T+ [1N]”

The boxed instance af!r is valid because all the zoned formulas(in'® are in
the left form zones, as is the zone of the ! itself, so the caispa< is the same as
< on the intuitionistic zones (deffi.]14).

“ see [p].



— case ofi/—L:
(1““, I F [P])?! (1““,1“2 i [N]Fz: Q*)?!
(rr) e [er] s ()" (] F @)
(rrery)” [P = (] - @ Q)

(r.rerg)” 5 [P — N (2: Q)™

(l"“,l"‘i,l"‘é i [P—N]F2z: Q*)?!

The boxed instance af—L contains the only split of the right context that can

succeed in the same focused phase, reach an initial sequent or a phase tran-

sition, becaue thatP)*f eventually produces either a positive atom (which must

finish the proof withc/er and since right form zones are restric{gdQ~)*® cannot

be present) or g1y which guarantees that the rest of the right context is empty.
— cases of/?2L andpr :

T; P’l--;y:Q’)?! Tr[P

O P Q)7 [e/] W

(r)lp X [?(zr) (P_)la] [ (y Q_)rp (l—)lp Cp (L I‘): (P)rf
OF ;5 [2P)]F(v: Q)™ OF ;- r-; (z:P)?
(s [2P]ry:Q)” 5k 2P

The boxed instance of . is justified because the subscript zone] is of the right
form (in order to compare withy(r)) which is <-smaller than its corresponding
left-form zone (defn[ 34). Note that it is crucial for souress to haveZ r) not be
smaller than all left form zones. Since right form zones asdricted, there is no
copying in the boxed instance gkor. The other decision cases are similar. O

We note one important direct corollary of thm] 17.

Corollary 18 (intuitionistic logic in classical linear logic) There is a focally adequate
encoding of intuitiontistic logic in classical linear logji

It is well known ||9] that (classical) linear logic can encatie intuitionistic impli-
cationo as follows:A> B = A — B. However, this encoding is only globally ade-
quate ]. Itis possible to refine this encoding to obtainlly fadequate encodinﬂlZ]
in an enriched classical linear logic which is not appaseati instance of classical
subexponential logic. Corolla||z|18 further improves ouderianding of encodings of
intuitionistic implicication by permuting ! into the antedent of the implication until
there is a phase change, which removes the bureaucratiitpsiaitch inherent in this
implicationfj

Proof (of cor.).The split of the signaturg (defn.ﬁ) is isomorphic to the signature
11, so apply thij]?. O

5 Note that the polarised intuitionistic implicatidh— N, if encoded using Girard’s encoding,
would be TP — N, which breaks the polarisation of the antecedent.



5 Conclusions

Section|]4 shows that any given classical (resp. intuiti@r)isubexponential logic can
be encoded in a related intuitionistic (resp. classicaesponential logic such that
partial synthetic derivations are preserved. This is arteeth result, with at least one of
the directions of encoding being novel. It strongly suggésat one of the fractures in
logic identified by Miller in ]—the classicahtuitionistic divide—might be healed
by analyses and algorithms that are generic on subexpahsignatures. One might
still favour “classical” or “intuitionistic” dialects foproofs, but neither format is more
fundamental.

The results of this paper have two caveats. First, we onlgidenthe “restricted” or
the “unrestricted” flavours of subexponentials; Eh [8] tnevere also subexponentials
of the “strict” and “dfine” flavours for which our results here do not extend directly
Second, we do not consider encodings involving non-praijoosil kinds, such as terms
or frames. Subexponentials are still useful for such steoegcodings, buepresenta-
tional adequacynay not be as straightforward.
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