11,416 research outputs found

    Two loop detection mechanisms: a comparison

    Get PDF
    In order to compare two loop detection mechanisms we describe two calculi for theorem proving in intuitionistic propositional logic. We call them both MJ Hist, and distinguish between them by description as `Swiss' or `Scottish'. These calculi combine in different ways the ideas on focused proof search of Herbelin and Dyckhoff & Pinto with the work of Heuerding emphet al on loop detection. The Scottish calculus detects loops earlier than the Swiss calculus but at the expense of modest extra storage in the history. A comparison of the two approaches is then given, both on a theoretic and on an implementational level

    Adaptive, cautious, predictive control with Gaussian process priors

    Get PDF
    Nonparametric Gaussian Process models, a Bayesian statistics approach, are used to implement a nonlinear adaptive control law. Predictions, including propagation of the state uncertainty are made over a k-step horizon. The expected value of a quadratic cost function is minimised, over this prediction horizon, without ignoring the variance of the model predictions. The general method and its main features are illustrated on a simulation example

    Superheated Droplet Detectors as CDM Detectors: The SIMPLE Experiment

    Get PDF
    Superheated Droplet Detectors (SDDs) are becoming commonplace in neutron personnel dosimetry. Their total insensitivity to minimum ionizing radiation (while responsive to nuclear recoils of energies ~ few keV), together with their low cost, ease of production, and operation at room temperature and 1 atm makes them ideal for Cold Dark Matter (CDM) searches. SDD's are optimal for the exploration of the spin-dependent neutralino coupling due to their high fluorine content. The status of SIMPLE (Superheated Instrument for Massive ParticLe Experiments) is presented. Under realistic background considerations, we expect an improvement in the present Cold Dark Matter sensitivity of 2-3 orders of magnitude after ~1 kg-y of data acquisition.Comment: 6 pages, including 4 figures. To appear in the Proceedings of the Intl. Workshop on the Identification of Dark Matter (Sheffield, Sept. 96

    A System of Interaction and Structure II: The Need for Deep Inference

    Full text link
    This paper studies properties of the logic BV, which is an extension of multiplicative linear logic (MLL) with a self-dual non-commutative operator. BV is presented in the calculus of structures, a proof theoretic formalism that supports deep inference, in which inference rules can be applied anywhere inside logical expressions. The use of deep inference results in a simple logical system for MLL extended with the self-dual non-commutative operator, which has been to date not known to be expressible in sequent calculus. In this paper, deep inference is shown to be crucial for the logic BV, that is, any restriction on the ``depth'' of the inference rules of BV would result in a strictly less expressive logical system

    How to Prepare for the Auditor

    Get PDF

    Beta Irradiation of a Geometrically Metastable Superconducting Strip Detector with a Magnetic Flux Penetration Read-Out

    Full text link
    Geometrical metastability, observed in superconducting type I tin flat strips, has been previously proposed as a principle for particle detection. The energy deposition of an incoming beta-particle induces the rupture of the metastability and consequently the penetration of multiquantum flux tubes into a superconducting tin strip. We present here the first absorption spectra from two beta sources, which demonstrate the linearity and energy-resolution of these detectors (presented at the 6th International Workshop on Low Temperature Detectors for Dark Matter and Neutrinos (LTD-6), Interlaken, Switzerland, Sept. 1995)Comment: Compressed PostScript (filename.ps.Z), 8 pages, 2 figure
    corecore