1,513 research outputs found

    Quantum point contact conductance in NINS junctions

    Full text link
    The effect of an insulating barrier located at a distance aa from a NS quantum point contact is analyzed in this work. The Bogoliubov de Gennes equations are solved for NINS junctions (S: anysotropic superconductor, I: insulator and N: normal metal), where the NIN region is a quantum wire. For a0% a\neq0, bound states and resonances in the differential conductance are predicted. These resonances depend on the symmetry of the pair potential, the strength of the insulating barrier and aa . Our results show that in a NINS quantum point contact the number of resonances vary with the symmetry of the order parameter. This is to be contrasted with the results for the NINS junction, in which only the position of the resonances changes with the symmetry.Comment: 5 pages, 5 Figures, RevTex

    Phosphomannosylation and the functional analysis of the extended Candida albicans MNN4-like gene family

    Get PDF
    We thank Luz A. López-Ramírez (Universidad de Guanajuato) for technical assistance. This work was supported by Consejo Nacional de Ciencia y Tecnología (ref. CB2011/166860; PDCPN2014-247109, and FC 2015-02-834), Universidad de Guanajuato (ref. 000025/11; 0087/13; ref. 1025/2016; Convocatoria Institucional para Fortalecer la Excelencia Académica 2015; CIFOREA 89/2016), Programa de Mejoramiento de Profesorado (ref. UGTO-PTC-261), and Red Temática Glicociencia en Salud (CONACYT-México). NG acknowledges the Wellcome Trust (086827, 075470, 101873, and 200208) and MRC Centre for Medical Mycology for funding (N006364/1). KJ was supported by a research visitor grant to Aberdeen from China Scholarship Council (CSC No. 201406055024). The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fmicb.2017.02156/full#supplementary-materialPeer reviewedPublisher PD

    Scale-invariant magnetoresistance in a cuprate superconductor

    Full text link
    The anomalous metallic state in high-temperature superconducting cuprates is masked by the onset of superconductivity near a quantum critical point. Use of high magnetic fields to suppress superconductivity has enabled a detailed study of the ground state in these systems. Yet, the direct effect of strong magnetic fields on the metallic behavior at low temperatures is poorly understood, especially near critical doping, x=0.19x=0.19. Here we report a high-field magnetoresistance study of thin films of \LSCO cuprates in close vicinity to critical doping, 0.161x0.1900.161\leq x\leq0.190. We find that the metallic state exposed by suppressing superconductivity is characterized by a magnetoresistance that is linear in magnetic field up to the highest measured fields of 8080T. The slope of the linear-in-field resistivity is temperature-independent at very high fields. It mirrors the magnitude and doping evolution of the linear-in-temperature resistivity that has been ascribed to Planckian dissipation near a quantum critical point. This establishes true scale-invariant conductivity as the signature of the strange metal state in the high-temperature superconducting cuprates.Comment: 10 pages, 3 figure

    New measurement of the 242Pu(n,γ) cross section at n_TOF

    Get PDF
    WONDER-2015 – 4th International Workshop On Nuclear Data Evaluation for Reactor applicationsThe use of MOX fuel (mixed-oxide fuel made of UO2 and PuO2) in nuclear reactors allows substituting a large fraction of the enriched Uranium by Plutonium reprocessed from spent fuel. With the use of such new fuel composition rich in Pu, a better knowledge of the capture and fission cross sections of the Pu isotopes becomes very important. In particular, a new series of cross section evaluations have been recently carried out jointly by the European (JEFF) and United States (ENDF) nuclear data agencies. For the case of 242Pu, the two only neutron capture time-of-flight measurements available, from 1973 and 1976, are not consistent with each other, which calls for a new time-of flight capture cross section measurement. In order to contribute to a new evaluation, we have perfomed a neutron capture cross section measurement at the n_TOF-EAR1 facility at CERN using four C6D6 detectors, using a high purity target of 95 mg. The preliminary results assessing the quality and limitations (background, statistics and γ-flash effects) of this new experimental data are presented and discussed, taking into account that the aimed accuracy of the measurement ranges between 7% and 12% depending on the neutron energy regionMinisterio de Economía y Competitividad FPA2013-45083-PMinisterio de Economía y Competitividad FPA2014-53290-C2-2-

    Cu2ZnSnS4 thin film solar cells grown by fast thermal evaporation and thermal treatment

    Full text link
    Cu2ZnSnS4 thin films have been produced via rapid thermal evaporation of off-stoichiometric kesterite powder followed by annealing in an Ar atmosphere. Different heating rates were applied during the thermal treatments. The chemical composition and structural properties of the deposited layers as well as the distribution of the elements through the kesterite thin film have been investigated. The initial growth of a SnS secondary phase during evaporation led to the formation of this secondary phase next to the Mo back contact. Solar cell power conversion efficiencies were limited to values about 3 % due to this secondary phase. Furthermore, an increased open circuit voltage was demonstrated by using a Zn(O,S) buffer layerThis work was supported by DAAD project (INTERKEST, Ref: 57050358), Marie Curie-ITN (KESTCELLS, GA: 316488) and MINECO project (SUNBEAM, ENE2013-49136-C4-3-R). RC and ES acknowledge financial support from Spanish MINECO within the Ramón y Cajal program (RYC-2011-08521) and (RYC-2011-09212) respectively. SG also thanks the Government of Spain for the FPI fellowship (BES-2014-068533)

    Development of intraspecific size variation in black coucals, white‐browed coucals and ruffs from hatching to fledging

    Get PDF
    Most studies on sexual size dimorphism address proximate and functional questions related to adults, but sexual size dimorphism usually develops during ontogeny and developmental trajectories of sexual size dimorphism are poorly understood. We studied three bird species with variation in adult sexual size dimorphism: black coucals (females 69% heavier than males), white‐browed coucals (females 13% heavier than males) and ruffs (males 70% heavier than females). Using a flexible Bayesian generalized additive model framework (GAMM), we examined when and how sexual size dimorphism developed in body mass, tarsus length and bill length from hatching until fledging. In ruffs, we additionally examined the development of intrasexual size variation among three morphs (Independents, Satellites and Faeders), which creates another level of variation in adult size of males and females. We found that 27–100% of the adult inter‐ and intrasexual size variation developed until fledging although none of the species completed growth during the observational period. In general, the larger sex/morph grew more quickly and reached its maximal absolute growth rate later than the smaller sex/morph. However, when the daily increase in body mass was modelled as a proportion, growth patterns were synchronized between and within sexes. Growth broadly followed sigmoidal asymptotic models, however only with the flexible GAMM approach, residual distributions were homogeneous over the entire observation periods. These results provide a platform for future studies to relate variation in growth to selective pressures and proximate mechanisms in these three species, and they highlight the advantage of using a flexible model approach for examining growth variation during ontogeny
    corecore