54 research outputs found

    The use of India ink in tissue-simulating phantoms

    Get PDF
    The optical properties of India ink, an absorber often used in preparation of tissue simulating phantoms, have been investigated at visible and near infrared wavelengths. The extinction coefficient has been obtained from measurements of collimated transmittance and from spectrophotometric measurements, the absorption coefficient from multidistance measurements of fluence rate in a diffusive infinite medium with small concentrations of added ink. Measurements have been carried out on samples of India ink from five different brands, and for some brands also from different batches. As also reported in previously published papers the results we have obtained showed large inter-brand and inter-batch variations for both the absorption and the extinction coefficient. On the contrary, our results showed small variations for the ratio between the absorption and the extinction coefficient. The albedo is therefore similar for all samples: The values averaged over all samples investigated were 0.161, 0.115, and 0.115 at λ = 632.8, 751, and 833 nm respectively, with maximum deviations of 0.044, 0.019, and 0.035. These results indicate that, using the values we have obtained for the albedo, it should be possible to obtain with uncertainty smaller than about 4% the absorption coefficient of a sample of unknown ink from simple measurements of extinction coefficient. A similar accuracy is not easily obtained with the complicated procedures necessary for measurements of absorption coefficient

    Accurate near-threshold model for ultracold KRb dimers from interisotope Feshbach spectroscopy

    Full text link
    We investigate magnetic Feshbach resonances in two different ultracold K-Rb mixtures. Information on the K(39)-Rb(87) isotopic pair is combined with novel and pre-existing observations of resonance patterns for K(40)-Rb(87). Interisotope resonance spectroscopy improves significantly our near-threshold model for scattering and bound-state calculations. Our analysis determines the number of bound states in singlet/triplet potentials and establishes precisely near threshold parameters for all K-Rb pairs of interest for experiments with both atoms and molecules. In addition, the model verifies the validity of the Born-Oppenheimer approximation at the present level of accuracy.Comment: 9 pages, 7 figure

    Feshbach resonances in ultracold K(39)

    Full text link
    We discover several magnetic Feshbach resonances in collisions of ultracold K(39) atoms, by studying atom losses and molecule formation. Accurate determination of the magnetic-field resonance locations allows us to optimize a quantum collision model for potassium isotopes. We employ the model to predict the magnetic-field dependence of scattering lengths and of near-threshold molecular levels. Our findings will be useful to plan future experiments on ultracold potassium atoms and molecules.Comment: 7 pages, 6 figure

    Assessment of an in situ temporal calibration method for time-resolved optical tomography

    Get PDF
    A 32-channel time-resolved optical imaging device is de- veloped at University College London to produce functional images of the neonatal brain and the female breast. Reconstruction of images using time-resolved measurements of transmitted light requires careful calibration of the temporal characteristics of the measurement system. Since they can often vary over a period of time, it is desirable to evaluate these characteristics immediately after, or prior to, the acqui- sition of image data. A calibration technique is investigated that is based on the measurement of light back-reflected from the surface of the object being imaged. This is facilitated by coupling each detector channel with an individual source fiber. A Monte Carlo model is em- ployed to investigate the influence of the optical properties of the object on the back-reflected signal. The results of simulations indicate that their influence may be small enough to be ignored in some cases, or could be largely accounted for by a small adjustment to the cali- brated data. The effectiveness of the method is briefly demonstrated by imaging a solid object with tissue-equivalent optical properties

    Effects of time-gated detection in diffuse optical imaging at short source-detector separation

    Get PDF
    The adoption of a short source-detector distance, combined with a time-resolved acquisition, can be advantageous in diffuse optical imaging due to the stricter spatial localization of the probing photons, provided that the strong burst of early photons is suppressed using a time-gated detection scheme. We propose a model for predicting the effect of the time-gated measurement system using a time-variant operator built on the system response acquired at different gate delays. The discrete representation of the system operator, termed Spread Matrix, can be analyzed to identify the bottlenecks of the detection system with respect to the physical problem under study. Measurements performed on tissue phantoms, using a time-gated single-photon avalanche diode and an interfiber distance of 2 mm, demonstrate that inhomogeneities down to 3 cm can be detected only if the decay constant of the detector is lower than 100 ps, while the transient opening of the gate has a less critical impact

    In-vivo multilaboratory investigation of the optical properties of the human head

    Get PDF
    The in-vivo optical properties of the human head are investigated in the 600–1100 nm range on different subjects using continuous wave and time domain diffuse optical spectroscopy. The work was performed in collaboration with different research groups and the different techniques were applied to the same subject. Data analysis was carried out using homogeneous and layered models and final results were also confirmed by Monte Carlo simulations. The depth sensitivity of each technique was investigated and related to the probed region of the cerebral tissue. This work, based on different validated instruments, is a contribution to fill the existing gap between the present knowledge and the actual in-vivo values of the head optical properties

    Determination of reference values for optical properties of liquid phantoms based on Intralipid and India ink

    Get PDF
    A multi-center study has been set up to accurately characterize the optical properties of diffusive liquid phantoms based on Intralipid and India ink at near-infrared (NIR) wavelengths. Nine research laboratories from six countries adopting different measurement techniques, instrumental set-ups, and data analysis methods determined at their best the optical properties and relative uncertainties of diffusive dilutions prepared with common samples of the two compounds. By exploiting a suitable statistical model, comprehensive reference values at three NIR wavelengths for the intrinsic absorption coefficient of India ink and the intrinsic reduced scattering coefficient of Intralipid-20% were determined with an uncertainty of about 2% or better, depending on the wavelength considered, and 1%, respectively. Even if in this study we focused on particular batches of India ink and Intralipid, the reference values determined here represent a solid and useful starting point for preparing diffusive liquid phantoms with accurately defined optical properties. Furthermore, due to the ready availability, low cost, long-term stability and batch-to-batch reproducibility of these compounds, they provide a unique fundamental tool for the calibration and performance assessment of diffuse optical spectroscopy instrumentation intended to be used in laboratory or clinical environment. Finally, the collaborative work presented here demonstrates that the accuracy level attained in this work for optical properties of diffusive phantoms is reliable

    Calibration of scattering and absorption properties of a liquid diffusive medium at NIR wavelengths. CW method.

    Get PDF
    In spite of many progresses achieved both with theories and with experiments in studying light propagation through diffusive media, a reliable method for accurate measurements of the optical properties of diffusive media at NIR wavelengths is, in our opinion, still missing. It is therefore difficult to create a diffusive medium with well known optical properties to be used as a reference. In this paper we describe a method to calibrate the reduced scattering coefficient, mu'(s) , of a liquid diffusive medium and the absorption coefficient, mu(a), of an absorbing medium with a standard error smaller than 2% both on mu'(s) and on mu(a). The method is based on multidistance measurements of fluence into an infinite medium illuminated by a CW source. The optical properties are retrieved with simple inversion procedures (linear fits) exploiting the knowledge of the absorption coefficient of the liquid into which the diffuser and the absorber are dispersed. In this study Intralipid diluted in water has been used as diffusive medium and Indian ink as absorber. For a full characterization of these media measurements of collimated transmittance have also been carried out, from which the asymmetry factor of the scattering function of Intralipid and the single scattering albedo of Indian ink have been determined
    • …
    corecore