7 research outputs found

    Tourism as a tool for natural hazard protection and territory development: Civita di Bagnoregio (Viterbo, Italy) as a case study

    Get PDF
    The village of Civita di Bagnoregio (Viterbo, Italy) represents a surreal landscape generated by accelerated soil erosion. The active landslides and erosive phenomena which are affecting Civita contributed to the progressive reduction of its surface and to its depopulation and currently require advanced engineering solutions to mitigate their impact. Furthermore they contributed to internationally increase the village fame, resulting in an increasing number of visitors over last years. The increasing touristic pressure on the village has been evaluated by taking into account also possible rising due to the recent candidature of Civita di Bagnoregio to the UNESCO’s World Heritage List (WHL). The high touristic pressure is triggering new critical issues highlighting the absence of a proper management plan: the data analysis highlighted the need to develop appropriate tourist numbers management strategies, considering also a partial re-investment of entrance fees for activities aimed to safeguard the village. The present research highlight that effects of tourist flows attracted by Civita di Bagnoregio could substantially contribute to both the safeguard of the village and the economical development of the territory. Properly distributed in the area by planning tourism decentralization policies based on an integrated valorisation of the territory it would be also possible to expand benefits deriving from the tourism sector to the entire Teverina area, transforming a stress factor into a development vector for the whole territory and the local population

    PRELIMINARY EVIDENCES OF A PALEOSOL IN THE LIVING LANDSCAPE OF CIVITA DI BAGNOREGIO (ITALY)

    No full text
    A paleosol has been identified in an area of great natural interest for its geomorphologic and naturalistic aspects between the municipalities of Bagnoregio and Castiglione in Teverina (Viterbo, Italy). This investigation represents the preliminary steps of a study aimed to know the specific environmental features and  dynamics prior to the eruptions of the "nenfri" of the Paleovulsini complex. The physico-chemical characteristics and some horizons morphological details such as the presence of roots fingerprint, the polyhedric angular and columnar structure  suggest incipient weathering and paedogenesis. Moreover, the presence of nodules and the high salinity of deep horizons suggest the incorporation of pyroclastic material into a hydromorphic environment at the time of the eruptions, putting forward the hypothesis of a paleo-marsh under an arid paleoclimate

    A new path to platelet production through matrix sensing Title: A new path to platelet production through matrix sensing

    No full text
    Haematologica 2017 [Epub ahead of print] Citation: Abbonante V, Di Buduo CA, Gruppi C, De Maria C, Spedden E, De Acutis A, Staii C, Raspanti M, Vozzi G, Kaplan D, Moccia F, Ravid K, and Balduini A. A new path to platelet production through matrix sensing. Haematologica. 2017; 102:xxx doi:10.3324/haematol.2016

    A new path to platelet production through matrix sensing

    Get PDF
    Megakaryocytes (MK) in the bone marrow (BM) are immersed in a network of extracellular matrix components that regulates platelet release into the circulation. Combining biological and bioengineering approaches, we found that the activation of transient receptor potential cation channel subfamily V member 4 (TRPV4), a mechano-sensitive ion channel, is induced upon MK adhesion on softer matrices. This response promoted platelet production by triggering a cascade of events that lead to calcium influx, \uce\ub21 integrin activation and internalization, and Akt phosphorylation, responses not found on stiffer matrices. Lysyl oxidase (LOX) is a physiological modulator of BM matrix stiffness via collagen crosslinking. In vivo inhibition of LOX and consequent matrix softening lead to TRPV4 activation cascade and increased platelet levels. At the same time, in vitro proplatelet formation was reduced on a recombinant enzyme-mediated stiffer collagen. These results suggest a novel mechanism by which MKs, through TRPV4, sense extracellular matrix environmental rigidity and release platelets accordingly

    Defective interaction of mutant calreticulin and SOCE in megakaryocytes from patients withmyeloproliferative neoplasms

    No full text
    About one fourth of patients with essential thrombocythemia or primary myelofibrosis carry a somatic mutation of CALR, the gene encoding for calreticulin. A 52-bp deletion (Type I mutation) and a 5-bp insertion (Type II mutation) are the most frequent genetic lesions. The mechanism(s) by which a CALR mutation leads to a myeloproliferative phenotype has been clarified only in part. We studied the interaction between calreticulin and Store Operated Calcium (Ca2+) Entry (SOCE) machinery in megakaryocytes from healthy individuals and from patients with CALR-mutated myeloproliferative neoplasms. In megakaryocytes from healthy subjects, binding of recombinant human thrombopoietin to c-Mpl induced the activation of STAT5, AKT and ERK1/2, determining inositol triphosphate (IP3)-dependent Ca2+ release from the endoplasmic reticulum. This resulted in the dissociation of the ERp57-mediated complex between calreticulin and STIM1, a protein of the SOCE machinery that leads to Ca2+ mobilization. In megakaryocytes from patients with CALR-mutated myeloproliferative neoplasms, defective interactions between mutant calreticulin, ERp57, and STIM1 activated SOCE and generated spontaneous cytosolic Ca2+ flows. In turn, this resulted in abnormal megakaryocyte proliferation that was reverted employing a specific SOCE inhibitor. In summary, the abnormal SOCE regulation of Ca2+ flows in megakaryocytes contributes to the pathophysiology of CALR-mutated myeloproliferative neoplasms. In perspective, SOCE may represent a new therapeutic target to counteract megakaryocyte proliferation and its clinical consequences in myeloproliferative neoplasms

    Phenotypical, Functional and Genetic Characterization of Mesenchymal Stem Cells Derived from the Spleen of Patients with Myelofibrosis.

    No full text
    Splenic extramedullary hematopoiesis is a major clinico-pathological feature of patients with myelofibrosis. As in the bone marrow (BM), hematopoiesis in the spleen occurs thank to the interplay of hematopoietic progenitor cells with the microenvironment, which provides the regulatory mechanism for their differentiation, proliferation and trafficking. Among other components, such as vessels and extra-cellular matrix proteins, this microenvironment encompasses different types of accessory cells, including mesenchymal stromal cells (MSCs). We have recently reported that MSCs from the BM of patients with myelofibrosis harbor genetics abnormalities and display an altered functional activity, suggesting that a primary MSC defect may either lead to or favor the pathogenesis of the disease. Here, we describe the phenotypical, functional, and genetic profile of MSCs isolated from the spleen of 23 patients with myelofibrosis, who underwent splenectomy for anemia and/or for excessive size of the spleen, and compare them to splenic mesenchymal stromal cells (s-MSCs) from 7 healthy subjects (HSs) who were splenectomized following traumatic lesion. The study was approved by the institutional review board of IRCSS Policlinico San Matteo Foundation; patients and HSs gave written informed consent for participating to the study. Mononuclear cells (MNCs) were obtained by dissociation of small spleen fragments by means of the GentleMacs Dissociator device (Miltenyi Biotech, Germany), and s-MSCs were isolated and expanded according to the standard procedures used for BM-MSCs. S-MSCs were obtained in 9/23 patients and in 3/7 HSs and displayed no significant differences for morphology and differentiation ability into adipocytic and osteoblastic lineages. However, the clonogenic efficiency of s-MSCs from patients with myelofibrosis was statistically higher than that of HSs (0.07 colonies/106 MNCs, range 0.03-0.01, vs 0.03/106 MNCs, range 0.03-0.04, respectively; p=0.048), whereas doubling time and time to senescence were not statistically different. Flow cytometric assessment of standard surface antigens (CD13, CD14, CD34, CD45, CD73, CD90, CD105) confirmed the mesenchymal nature of the cells grown in the cultures, and was similar between patients’ and HSs’ s-MSCs. When nestin expression was determined, no significant differences in the frequency of MSCs expressing this antigen was observed; however, nestin Mean Fluorescence Intensity (MFI) of patients’ s-MSCs was significantly lower than that of s-MSCs from HSs (22, range 6-45, vs 97, range 65-100, respectively; p=0.035). Patients’ s-MSCs also displayed a reduced capacity to sustain long term hematopoiesis in vitro in a classical Long Term Culture-Initiating Cell assay. However, when normal cord blood-derived CD34+ cells were co-cultured onto patients’ s-MSCs in a transwell system for 13 days, the output of CD41+ megakaryocytic cells increased with respect to culture where CD34+ cells were plated onto HSs' s-MSCs [21,5% vs 14,2% w/o recombinant human thrombopoietin (rhTPO), respectively, p=0,043; 60,2% vs 33,6% with rhTPO, respectively, p=0,01] at detriment of CD33+ cells (41,5% vs 48,6% w/o rhTPO, respectively, p=0,049; 10,4% vs 29,4% with rhTPO, respectively, p=0,012]. Finally, an abnormal karyotype [46XXt(5;17)(4-12)] was detected in 1 out of 18 metaphases of 1 out of 3 patient s-MSCs, while a normal karyotype was always observed in 2 out of 2 HSs’ s-MSC. This extensive characterization of s-MSCs shows that s-MSCs of patients with myelofibrosis display functional and genetic abnormalities compared to those isolated from HSs. The low level of nestin expression suggests that the hematopoietic niche of the spleen of patients with myelofibrosis can be defective and responsible for the increased trafficking of CD34+ cells that is observed in these patients, whereas the increased differentiation into the megakaryocytic lineage indicates a role of the splenic niche in leading hematopoiesis toward a pathological profile. All together, our data suggest that s-MSCs play a role in the pathogenesis of myelofibrosis and could be, therefore, a potential target for the treatment of the disease
    corecore