87 research outputs found

    Role of the orexin system on the hypothalamus-pituitary-thyroid axis

    Get PDF
    Hypocretin/orexin (ORX) are two hypothalamic neuropeptides discovered in 1998. Since their discovery, they have been one of the most studied neuropeptide systems because of their projecting fields innervating various brain areas. The orexinergic system is tied to sleep-wakefulness cycle, and narcolepsy is a consequence of their system hypofunction. Orexinergic system is also involved in many other autonomic functions such as feeding, thermoregulation, cardiovascular and neuroendocrine regulation. The main aim of this mini review article is to investigate the relationship between ORX and thyroid system regulation. Although knowledge about the ORX system is evolving, its putative effects on hypothalamic-pituitary-thyroid (HPT) axis still appear unclear. We analyzed some studies about ORX control of HPT axis to know better the relationship between them. The studies that were analyzed suggest Hypocretin/ORX to modulate the thyroid regulation, but the nature (excitatory or inhibitory) of this possible interaction remains actually unclear and needs to be confirmed

    Osteopontin: Relation between Adipose Tissue and Bone Homeostasis

    Get PDF
    Osteopontin (OPN) is a multifunctional protein mainly associated with bone metabolism and remodeling. Besides its physiological functions, OPN is implicated in the pathogenesis of a variety of disease states, such as obesity and osteoporosis. Importantly, during the last decades obesity and osteoporosis have become among the main threats to health worldwide. Because OPN is a protein principally expressed in cells with multifaceted effects on bone morphogenesis and remodeling and because it seems to be one of the most overexpressed genes in the adipose tissue of the obese contributing to osteoporosis, this mini review will highlight recent insights about relation between adipose tissue and bone homeostasis

    New Trends in the Regulation of the Gonadal Activity in Vertebrates : Paracrine and Autocrine Control

    No full text
    Volume: 6Start Page: 623End Page: 63

    Androgen receptor in the Harderian gland of Rana esculenta

    No full text
    An androgen receptor has been identified in the cytosolic and nuclear extracts of the Harderian gland of the frog, Rana esculenta. A single class of high-affinity binding sites was found: K(d) = 1.9 ± 1.3 (S.D.) nmol/l (n = 26) for the cytosolic extract and K(d) = 0.9 ± 0.8 nmol/l (n = 15) for the nuclear extract. The presence of binding activity in both nuclear and cytosolic extracts and the low rate of ligand-receptor dissociation are characteristics that distinguish this receptor from a steroid-binding protein. The K(d) did not show any sex difference and did not exhibit any secretory activity-related change. Binding in both cytosolic and nuclear extracts was specific for androgens (testosterone = 5α-dihydrotestosterone); oestradiol-17β showed a 30% cross-reaction; moreover, specific binding of [3H]oestradiol-17β was not detectable. The binding capacity of the Harderian gland increased progressively in both fractions from October to December, reaching a peak in May, and decreased suddenly during July to August. The lack of any morphological sex-related difference in the Harderian gland of the green frog might be accounted for by the high amount of circulating androgens as well as a similar concentration of androgen receptor in both sexes
    • …
    corecore