106 research outputs found

    Role of Cinchona Alkaloids in the Enantio- and Diastereoselective Synthesis of Axially Chiral Compounds

    Get PDF
    Asymmetric synthesis using organic catalysts has evolved since it was first realized and defined. Nowadays, it can be considered a valid alternative to transition metal catalysis for synthesizing chiral molecules. According to the literature, the number of asymmetric organocatalytic processes associated with atropisomer synthesis has rapidly increased over the past 10 years because organocatalysis addresses the challenges posed by the most widespread strategies used for preparing axially chiral molecules with satisfactory results. These strategies, useful to prepare a wide range of C–C, C–heteroatom, and N–N atropisomers, vary from kinetic resolution to direct arylation, desymmetrization, and central-to-axial chirality conversion. In this field, our contribution focuses on determining novel methods for synthesizing atropisomers, during which, in most cases, the construction of one or more stereogenic centers other than the stereogenic axis occurred. To efficiently address this challenge, we exploited the ability of catalysts based on a cinchona alkaloid scaffold to realize enantioselective organic transformations. Desymmetrization of N-(2-tert-butylphenyl) maleimides was one of the first strategies that we pursued for preparing C–N atropisomers. The main principle is based on the presence of a rotationally hindered C–N single bond owing to the presence of a large tert-butyl group. Following the peculiar reactivity of this type of substrate as a powerful electrophile and dienophile, we realized several transformations. First, we investigated the vinylogous Michael addition of 3-substituted cyclohexenones, where a stereogenic axis and two contiguous stereocenters were concomitantly and remotely formed and stereocontrolled using a primary amine catalyst. Subsequently, we realized desymmetrization via an organocatalytic Diels–Alder reaction of activated unsaturated ketones that enabled highly atropselective transformation with efficient diastereoselectivity, thereby simultaneously controlling four stereogenic elements. Employing chiral organic bases allowed us to realize efficient desymmetrizations using carbon nucleophiles, such as 1,3-dicarbonyl compounds, cyanoacetates, and oxindoles. These reactions, performed with different types of catalysts, highlighted the versatility of organocatalysis as a powerful strategy for atropselective desymmetrization of pro-axially chiral maleimides. Hereafter, we studied the Friedel–Crafts alkylation of naphthols with indenones, a powerful method for enantioselective synthesis of conformationally restricted diastereoisomeric indanones. We realized the first axially chiral selective Knoevenagel condensation using cinchona alkaloid primary amine as the catalyst. This reaction provided a powerful method to access enantioenriched olefins containing the oxindole core. Subsequently, we initiated an intense program for the computational investigation of the reaction mechanism of our atropselective processes. An understanding of the catalytic activity for vinylogous atropselective desymmetrization as well as of the role played by the acidic cocatalyst used for the experimental work was achieved. Recently, we have garnered interest in the novel frontiers of atropselective synthesis. As observed in recent publications, there is considerable interest in the development of methods for preparing N–N atropisomers, an emerging topic in the field of atropselective synthesis. We focused on the synthesis of hydrazide atropisomers by developing a one-pot sequential catalysis protocol based on two sequential organocatalytic reactions that provided high stereocontrol of two contiguous stereogenic elements

    COVID-19 Pandemic: Huge Stress Test for Health System Could Be a Great Opportunity to Update the Workflow in a Modern Surgical Pathology

    Get PDF
    Simple Summary The COVID-19 pandemic has hit Northern Italy's regions hard in terms of deaths since February 2020. Containment measures have been applied to avoid contagion and reduce the patient infection rate. In this manuscript, we report the experience of the Pathology Department of the Fondazione IRCCS Istituto Nazionale Tumori in Milan, during the period of the first lockdown that occurred in Lombardy from March to May 2020, focusing on the variation in terms of exams between the pre-COVID-19 and COVID-19 periods and describing the measures applied to guarantee the safeguarding of workers. Moreover, we calculated if changes introduced within the workflow affected the average diagnosis time using Turn-Around-Time (TAT) metrics released by the Lombardy Region. We showed a sharp slowdown in exams during the first wave of COVID-19 and that the measures applied for the safeguarding of the personnel turned out to be feasible and did not affect the overall performance of the Pathology Department. Background: On December 2019, an outbreak of atypical pneumonia, known as COVID-19, was identified in Wuhan, China. This disease, characterized by the rapid human-to-human transmission of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread rapidly in more than 200 countries. Northern Italy's regions have been hit hard in terms of deaths. Here, we report the experience of the Pathology Department of the Fondazione IRCCS Istituto Nazionale Tumori (INT) in Milan, the first Italian public cancer center, in the period of the lockdown that took place in Lombardy from March to May 2020. Method: The variation in terms of exams was calculated in two different timeframes: December 2019-February 2020 (pre-COVID-19) and March-May 2020 (COVID-19). During these periods, Turn-Around-Time (TAT) metrics released by the Lombardy Region were calculated to assess if changes applied to guarantee the safeguarding of workers affected the average diagnosis time. Results: In the COVID-19 period, there was a decrease for all the performed exams. The most considerable decrease was observed for PAP tests (-81.6%), followed by biopsies (-48.8%), second opinions (-41.7%), and surgical (-31.5%), molecular (-29.4%) and cytological (-18.1%) tests. Measures applied within the Pathology Department, such as digital pathology, remote working, rotations and changes in operating procedures, improved the diagnostic performance as required by the guidelines of the Lombardy Region in terms of TAT. At the same time, the measures applied for the safeguarding of the personnel turned out to be feasible and did not affect the overall performance of the Pathology Department. Conclusions: The sharp slowdown in cancer screening during the first wave of COVID-19 could seriously endanger cancer prevention in the near future

    Improved Prognostic Prediction in Never-Smoker Lung Cancer Patients by Integration of a Systemic Inflammation Marker with Tumor Immune Contexture Analysis

    Get PDF
    Almost 25% of lung cancers (LCs) occur in never-smokers. LC inflammatory profile, based on plasma C-reactive protein levels (CRP), predicts mortality, independently by smoking-status. We hypothesized that: CRP could be associated with tumor immune contexture (TIC) in never-smokers and both these two parameters may improve their prognosis. Sixty-eight never-smokers LC patients with high or low CRP were selected. The programmed cell death protein 1 (PD-1) and its ligand (PD-L1), the human leukocyte antigens (HLA-DR and HLA-I), CD8, CD4, CD3, CD33, CD163, and CD68 were evaluated by immunohistochemistry on surgical samples given TIC evaluation. The classification model based on TIC scores was generated by Classification and Regression Tree analysis. Tumor mutational burden was evaluated by targeted next-generation sequencing. Exclusively high CRP (H-CRP) subset showed PD-L1 expression in 35% of LC as well as lower HLA-I and HLA-DR in their stromal cells. CD3, CD4, CD8, HLA-I, HLA-DR tumor cells staining were associated with a "low inflammatory profile" subset. CRP and LC immune profiles drive clinical outcome: 5-year survival 88% against 8% was associated with low and high-risk profiles (p< 0.0001). Clinical outcome prediction in never-smoker LC patients may be improved by both CRP and tumor immune contexture evaluation

    Beyond Traditional Morphological Characterization of Lung Neuroendocrine Neoplasms: In Silico Study of Next-Generation Sequencing Mutations Analysis across the Four World Health Organization Defined Groups

    Get PDF
    Lung neuroendocrine neoplasms (LNENs) classes, as proposed by the World Health Organization 2015, do not provide properly prognostic and therapeutic indications. In fact, high-throughput molecular analysis, based on next-generation sequencing, identified novel molecular subgroups, associated with different genomic signatures, that could pave the way for alternative therapeutic approaches. The present review, coupled with in silico molecular analysis, could show the current genomic alterations state in actual LNENS groups. Interestingly our manuscript suggests that the molecular novelties could improve the LNENs therapeutics efficacy. In more detail, we reported the differences of gene alterations and mutational rate between LNENS, confirming the central pathogenetic role given by a different mutational rate in chromatin remodeling genes and tumor suppressors TP53-RB1. In conclusion, our results underlined that a further molecular layer is needed to improve the efficacy of LNENs medical treatment.Lung neuroendocrine neoplasms (LNENs) represent a rare and heterogeneous population of lung tumors. LNENs incidence rate has increased dramatically over the past 30 years. The current World Health Organization LNENs classification (WHO 2015), distinguished four LNENs prognostic categories, according to their morphology, necrosis amount and mitotic count: typical carcinoid (TC), atypical-carcinoid (AC), large cell neuroendocrine carcinoma (LCNEC) and small cell lung cancer (SCLC). At present, due to their rarity and biological heterogeneity there is still no consensus on the best therapeutic approach. Next-generation-sequencing analysis showed that WHO 2015 LNENs classes, could be characterized also by specific molecular alterations: frequently mutated genes involving chromatin remodeling and generally characterized by low mutational burden (MB) are frequently detected in both TC and AC; otherwise, TP53 and RB1 tumor suppressor genes alterations and high MB are usually detected in LCNEC and SCLC. We provide an overview concerning gene mutations in each WHO 2015 LNENs class in order to report the current LNENs mutational status as potential tool to better understand their clinical outcome and to drive medical treatment

    Prognostic features of gastro-entero-pancreatic neuroendocrine neoplasms in primary and metastatic sites: Grade, mesenteric tumour deposits and emerging novelties

    Get PDF
    Updates in classification of gastro-entero-pancreatic neuroendocrine neoplasms better reflect the biological characteristics of these tumours. In the present study, we analysed the characteristics of neuroendocrine tumours that could aid in a more precise stratification of risk groups. In addition, we have highlighted the importance of grade (re)assessment based on investigation of secondary tumour lesions. Two hundred and sixty-four cases of neuroendocrine tumours of gastro-entero-pancreatic origin from three centres were included in the study. Tumour morphology, mitotic count and Ki67 labelling index were evaluated in specimens of primary tumours, lymph node metastases and distant metastases. These variables were correlated with overall survival (OS) and relapse-free survival (RFS). Tumour stage, number of affected lymph nodes, presence of tumour deposits and synchronous/metachronous metastases were tested as possible prognostic features. Mitotic count, Ki-67 labelling index, primary tumour site, tumour stage, presence of tumour deposits and two or more affected lymph nodes were significant predictors of OS and RFS. At the same time, mitotic count and Ki-67 labelling index can be addressed as continuous variables determining prognosis. We observed a very high correlation between the measures of proliferative activity in primary and secondary tumour foci. The presence of isolated tumour deposits was identified as an important determinant of both RFS and OS for pancreatic (hazard ratio [HR] = 7.61, 95% confidence interval [CI] = 3.96-14.6, P < 0.0001 for RFS; HR = 3.28, 95% CI = 1.56-6.87, P = 0.0017 for OS) and ileal/jejunal neuroendocrine tumours (HR = 1.98, 95% CI = 1.25-3.13, P = 0.0036 for RFS and HR 2.59, 95% CI = 1.27-5.26, P = 0.009 for OS). The present study identifies the presence of mesenterial tumour deposits as an important prognostic factor for gastro-entero-pancreatic neuroendocrine tumours, provides evidence that proliferative parameters need to be treated as continuous variables and further supports the importance of grade determination in all available tumour foci

    Preventive exercise and physical rehabilitation promote long-term potentiation-like plasticity expression in patients with multiple sclerosis

    Get PDF
    Background and purpose: Loss of long-term potentiation (LTP) expression has been associated with a worse disease course in relapsing-remitting multiple sclerosis (RR-MS) and represents a pathophysiological hallmark of progressive multiple sclerosis (PMS). Exercise and physical rehabilitation are the most prominent therapeutic approaches to promote synaptic plasticity. We aimed to explore whether physical exercise is able to improve the expression of LTP-like plasticity in patients with multiple sclerosis (MS). Methods: In 46 newly diagnosed RR-MS patients, we explored the impact of preventive exercise on LTP-like plasticity as assessed by intermittent theta-burst stimulation. Patients were divided into sedentary or active, based on physical activity performed during the 6 months prior to diagnosis. Furthermore, in 18 patients with PMS, we evaluated the impact of an 8-week inpatient neurorehabilitation program on clinical scores and LTP-like plasticity explored using paired associative stimulation (PAS). Synaptic plasticity expression was compared in patients and healthy subjects. Results: Reduced LTP expression was found in RR-MS patients compared with controls. Exercising RR-MS patients showed a greater amount of LTP expression compared with sedentary patients. In PMS patients, LTP expression was reduced compared with controls and increased after 8 weeks of rehabilitation. In this group of patients, LTP magnitude at baseline predicted the improvement in hand dexterity. Conclusions: Both preventive exercise and physical rehabilitation may enhance the expression of LTP-like synaptic plasticity in MS, with potential beneficial effects on disability accumulation

    Cerebrospinal fluid, brain, and spinal cord levels of L-aspartate signal excitatory neurotransmission abnormalities in multiple sclerosis patients and experimental autoimmune encephalomyelitis mouse model

    Get PDF
    The neuroinflammatory process characterizing multiple sclerosis (MS) is associated with changes in excitatory synaptic transmission and altered central concentrations of the primary excitatory amino acid, L-glutamate (L-Glu). Recent findings report that cerebrospinal fluid (CSF) levels of L-Glu positively correlate with pro-inflammatory cytokines in MS patients. However, to date, there is no evidence about the relationship between the other primary excitatory amino acid, L-aspartate (L-Asp), its derivative D-enantiomer, D-aspartate, and the levels of pro-inflammatory and anti-inflammatory cytokines in the CSF of MS. In the present study, we measured by HPLC the levels of these amino acids in the cortex, hippocampus, cerebellum, and spinal cord of mice affected by experimental autoimmune encephalomyelitis (EAE). Interestingly, in support of glutamatergic neurotransmission abnormalities in neuroinflammatory conditions, we showed reduced L-Asp levels in the cortex and spinal cord of EAE mice and increased D-aspartate/total aspartate ratio within the cerebellum and spinal cord of these animals. Additionally, we found significantly decreased CSF levels of L-Asp in both relapsing-remitting (n = 157) MS (RR-MS) and secondary progressive/primary progressive (n = 22) (SP/PP-MS) patients, compared to control subjects with other neurological diseases (n = 40). Importantly, in RR-MS patients, L-Asp levels were correlated with the CSF concentrations of the inflammatory biomarkers G-CSF, IL-1ra, MIP-1β, and Eotaxin, indicating that the central content of this excitatory amino acid, as previously reported for L-Glu, reflects a neuroinflammatory environment in MS. In keeping with this, we revealed that CSF L-Asp levels were positively correlated with those of L-Glu, highlighting the convergent variation of these two excitatory amino acids under inflammatory synaptopathy occurring in MS

    BACE1 influences clinical manifestations and central inflammation in relapsing remitting multiple sclerosis

    Get PDF
    Neurodegenerative and inflammatory processes influence the clinical course of multiple sclerosis (MS). The beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) has been associated with cognitive dysfunction, amyloid deposition and neuroinflammation in Alzheimer's disease.We explored in a group of 50 patients with relapsing-remitting MS the association between the cerebrospinal fluid (CSF) levels of BACE1, clinical characteristics at the time of diagnosis and prospective disability after three-years follow-up. In addition, we assessed the correlations between the CSF levels of BACE 1, amyloid beta (A beta) 1-40 and 1-42, phosphorylated tau (pTau), lactate, and a set of inflammatory and anti-inflammatory molecules.BACE1 CSF levels were correlated positively with depression as measured with Beck Depression Inventory-Second Edition scale, and negatively with visuospatial memory performance evaluated by the Brief Visuospatial Memory Test-Revised. In addition, BACE CSF levels were positively correlated with Bayesian Risk Estimate for MS at onset, and with Expanded Disability Status Scale score assessed three years after diagnosis. Furthermore, a positive correlation was found between BACE1, amyloid beta 42/40 ratio (Spearman's r = 0.334, p = 0.018, n = 50), pTau (Spearman's r = 0.304, p = 0.032, n = 50) and lactate concentrations (Spearman's r = 0.361, p = 0.01, n = 50). Finally, an association emerged between BACE1 CSF levels and a group of pro and anti-inflammatory molecules, including interleukin (IL)-4, IL-17, IL-13, IL-9 and interferon-gamma.BACE1 may have a role in different key mechanisms such as neurodegeneration, oxidative stress and inflammation, influencing mood, cognitive disorders and disability progression in MS

    LKB1 Down-Modulation by miR-17 Identifies Patients With NSCLC Having Worse Prognosis Eligible for Energy-Stress–Based Treatments

    Get PDF
    Abstract Introduction Preclinical models recently unveiled the vulnerability of LKB1/KRAS comutated NSCLC to metabolic stress-based treatments. Because miR-17 is a potential epigenetic regulator of LKB1, we hypothesized that wild-type LKB1 (LKB1WT) NSCLC with high miR-17 expression may be sensitive to an energetic stress condition, and eligible for metabolic frailties-based therapeutic intervention. Methods We took advantage of NSCLC cell lines with different combinations of KRAS mutation and LKB1 deletion and of patient-derived xenografts (PDXs) with high (LKB1WT/miR-17 high) or low (LKB1WT/miR-17 low) miR-17 expression. We evaluated LKB1 pathway impairment and apoptotic response to metformin. We retrospectively evaluated LKB1 and miR-17 expression levels in tissue specimens of patients with NSCLC and PDXs. In addition, a lung cancer series from The Cancer Genome Atlas data set was analyzed for miR-17 expression and potential correlation with clinical features. Results We identified miR-17 as an epigenetic regulator of LKB1 in NSCLC and confirmed targeting of miR-17 to LKB1 3′ untranslated region by luciferase reporter assay. We found that miR-17 overexpression functionally impairs the LKB1/AMPK pathway. Metformin treatment prompted apoptosis on miR-17 overexpression only in LKB1WT cell lines, and in LKB1WT/miR-17 high PDXs. A retrospective analysis in patients with NSCLC revealed an inverse correlation between miR-17 and LKB1 expression and highlighted a prognostic role of miR-17 expression in LKB1WT patients, which was further confirmed by The Cancer Genome Atlas data analysis. Conclusions We identified miR-17 as a mediator of LKB1 expression in NSCLC tumors. This study proposes a miR-17 expression score potentially exploitable to discriminate LKB1WT patients with NSCLC with impaired LKB1 expression and poor outcome, eligible for energy-stress-based treatments

    Metformin Enhances Cisplatin-Induced Apoptosis and Prevents Resistance to Cisplatin in Co-mutated KRAS/LKB1 NSCLC

    Get PDF
    Abstract Introduction We hypothesized that activating KRAS mutations and inactivation of the liver kinase B1 (LKB1) oncosuppressor can cooperate to sustain NSCLC aggressiveness. We also hypothesized that the growth advantage of KRAS/LKB1 co-mutated tumors could be balanced by higher sensitivity to metabolic stress conditions, such as metformin treatment, thus revealing new strategies to target this aggressive NSCLC subtype. Methods We retrospectively determined the frequency and prognostic value of KRAS/LKB1 co-mutations in tissue specimens from NSCLC patients enrolled in the TAILOR trial. We generated stable LKB1 knockdown and LKB1-overexpressing isogenic H1299 and A549 cell variants, respectively, to test the in vitro efficacy of metformin. We also investigated the effect of metformin on cisplatin-resistant CD133+ cells in NSCLC patient-derived xenografts. Results We found a trend towards worse overall survival in patients with KRAS/LKB1 co-mutated tumors as compared to KRAS-mutated ones (hazard ratio: 2.02, 95% confidence interval: 0.94–4.35, p = 0.072). In preclinical experiments, metformin produced pro-apoptotic effects and enhanced cisplatin anticancer activity specifically in KRAS/LKB1 co-mutated patient-derived xenografts. Moreover, metformin prevented the development of acquired tumor resistance to 5 consecutive cycles of cisplatin treatment (75% response rate with metformin-cisplatin as compared to 0% response rate with cisplatin), while reducing CD133+ cells. Conclusions LKB1 mutations, especially when combined with KRAS mutations, may define a specific and more aggressive NSCLC subtype. Metformin synergizes with cisplatin against KRAS/LKB1 co-mutated tumors, and may prevent or delay the onset of resistance to cisplatin by targeting CD133+ cancer stem cells. This study lays the foundations for combining metformin with standard platinum-based chemotherapy in the treatment of KRAS/LKB1 co-mutated NSCLC
    • …
    corecore