2,342 research outputs found

    Positioning and clock synchronization through entanglement

    Get PDF
    A method is proposed to employ entangled and squeezed light for determining the position of a party and for synchronizing distant clocks. An accuracy gain over analogous protocols that employ classical resources is demonstrated and a quantum-cryptographic positioning application is given, which allows only trusted parties to learn the position of whatever must be localized. The presence of a lossy channel and imperfect photodetection is considered. The advantages in using partially entangled states is discussed.Comment: Revised version. 9 pages, 6 figure

    Clock synchronization with dispersion cancellation

    Get PDF
    The dispersion cancellation feature of pulses which are entangled in frequency is employed to synchronize clocks of distant parties. The proposed protocol is insensitive to the pulse distortion caused by transit through a dispersive medium. Since there is cancellation to all orders, also the effects of slowly fluctuating dispersive media are compensated. The experimental setup can be realized with currently available technology, at least for a proof of principle.Comment: 4 pages, 3 figure

    On the Interpretation of Energy as the Rate of Quantum Computation

    Full text link
    Over the last few decades, developments in the physical limits of computing and quantum computing have increasingly taught us that it can be helpful to think about physics itself in computational terms. For example, work over the last decade has shown that the energy of a quantum system limits the rate at which it can perform significant computational operations, and suggests that we might validly interpret energy as in fact being the speed at which a physical system is "computing," in some appropriate sense of the word. In this paper, we explore the precise nature of this connection. Elementary results in quantum theory show that the Hamiltonian energy of any quantum system corresponds exactly to the angular velocity of state-vector rotation (defined in a certain natural way) in Hilbert space, and also to the rate at which the state-vector's components (in any basis) sweep out area in the complex plane. The total angle traversed (or area swept out) corresponds to the action of the Hamiltonian operator along the trajectory, and we can also consider it to be a measure of the "amount of computational effort exerted" by the system, or effort for short. For any specific quantum or classical computational operation, we can (at least in principle) calculate its difficulty, defined as the minimum effort required to perform that operation on a worst-case input state, and this in turn determines the minimum time required for quantum systems to carry out that operation on worst-case input states of a given energy. As examples, we calculate the difficulty of some basic 1-bit and n-bit quantum and classical operations in an simple unconstrained scenario.Comment: Revised to address reviewer comments. Corrects an error relating to time-ordering, adds some additional references and discussion, shortened in a few places. Figures now incorporated into tex

    The optimal unitary dilation for bosonic Gaussian channels

    Full text link
    A generic quantum channel can be represented in terms of a unitary interaction between the information-carrying system and a noisy environment. Here, the minimal number of quantum Gaussian environmental modes required to provide a unitary dilation of a multi-mode bosonic Gaussian channel is analyzed both for mixed and pure environment corresponding to the Stinespring representation. In particular, for the case of pure environment we compute this quantity and present an explicit unitary dilation for arbitrary bosonic Gaussian channel. These results considerably simplify the characterization of these continuous-variable maps and can be applied to address some open issues concerning the transmission of information encoded in bosonic systems.Comment: 9 page

    CdV2O4: A rare example of a collinear multiferroic spinel

    Full text link
    By studying the dielectric properties of the geometrically frustrated spinel CdV2O4, we observe ferroelectricity developing at the transition into the collinear antiferromagnetic ground state. In this multiferroic spinel, ferroelectricity is driven by local magnetostriction and not by the more common scenario of spiral magnetism. The experimental findings are corroborated by ab-initio calculations of the electric polarization and the underlying spin and orbital order. The results point towards a charge rearrangement due to dimerization, where electronic correlations and the proximity to the insulator-metal transition play an important role.Comment: 4+ pages, 3 figure

    Information-capacity description of spin-chain correlations

    Full text link
    Information capacities achievable in the multi-parallel-use scenarios are employed to characterize the quantum correlations in unmodulated spin chains. By studying the qubit amplitude damping channel, we calculate the quantum capacity QQ, the entanglement assisted capacity CEC_E, and the classical capacity C1C_1 of a spin chain with ferromagnetic Heisenberg interactions.Comment: 12 pages, 3 figures; typos corrected (to appear in PRA

    Generating Entangled Two-Photon States with Coincident Frequencies

    Full text link
    It is shown that parametric downconversion, with a short-duration pump pulse and a long nonlinear crystal that is appropriately phase matched, can produce a frequency-entangled biphoton state whose individual photons are coincident in frequency. Quantum interference experiments which distinguish this state from the familiar time-coincident biphoton state are described.Comment: Revised version (a typo was corrected) as published on PR

    Classical capacity of the lossy bosonic channel: the exact solution

    Full text link
    The classical capacity of the lossy bosonic channel is calculated exactly. It is shown that its Holevo information is not superadditive, and that a coherent-state encoding achieves capacity. The capacity of far-field, free-space optical communications is given as an example.Comment: 4 pages, 2 figures (revised version

    Heisenberg-style bounds for arbitrary estimates of shift parameters including prior information

    Full text link
    A rigorous lower bound is obtained for the average resolution of any estimate of a shift parameter, such as an optical phase shift or a spatial translation. The bound has the asymptotic form k_I/ where G is the generator of the shift (with an arbitrary discrete or continuous spectrum), and hence establishes a universally applicable bound of the same form as the usual Heisenberg limit. The scaling constant k_I depends on prior information about the shift parameter. For example, in phase sensing regimes, where the phase shift is confined to some small interval of length L, the relative resolution \delta\hat{\Phi}/L has the strict lower bound (2\pi e^3)^{-1/2}/, where m is the number of probes, each with generator G_1, and entangling joint measurements are permitted. Generalisations using other resource measures and including noise are briefly discussed. The results rely on the derivation of general entropic uncertainty relations for continuous observables, which are of interest in their own right.Comment: v2:new bound added for 'ignorance respecting estimates', some clarification

    Optomechanical scheme for the detection of weak impulsive forces

    Get PDF
    We show that a cooling scheme and an appropriate quantum nonstationary strategy can be used to improve the signal to noise ratio for the optomechanical detection of weak impulsive forces.Comment: 4 pages, Revtex, 1 figur
    • …
    corecore