2,814 research outputs found

    The role of entanglement in dynamical evolution

    Full text link
    Entanglement or entanglement generating interactions permit to achieve the maximum allowed speed in the dynamical evolution of a composite system, when the energy resources are distributed among subsystems. The cases of pre-existing entanglement and of entanglement-building interactions are separately addressed. The role of classical correlations is also discussed.Comment: 5 pages, 1 figure. Revised versio

    Limits to clock synchronization induced by completely dephasing communication channels

    Full text link
    Clock synchronization procedures are analyzed in the presence of imperfect communications. In this context we show that there are physical limitations which prevent one from synchronizing distant clocks when the intervening medium is completely dephasing, as in the case of a rapidly varying dispersive medium.Comment: 6 Pages. Revised version as published in PR

    Bosonic Memory Channels

    Full text link
    We discuss a Bosonic channel model with memory effects. It relies on a multi-mode squeezed (entangled) environment's state. The case of lossy Bosonic channels is analyzed in detail. We show that in the absence of input energy constraints the memory channels are equivalent to their memoryless counterparts. In the case of input energy constraint we provide lower and upper bounds for the memory channel capacity.Comment: 6 pages, 2 figure

    Quantum cryptographic ranging

    Get PDF
    We present a system to measure the distance between two parties that allows only trusted people to access the result. The security of the protocol is guaranteed by the complementarity principle in quantum mechanics. The protocol can be realized with available technology, at least as a proof of principle experiment.Comment: 2 pages, 1 figure. Contribution to the proceedings of the IV edition of the Garda Lake Workshop "Mysteries, Puzzles and Paradoxes in Quantum Mechanics

    Theory of integer quantum Hall polaritons in graphene

    Get PDF
    We present a theory of the cavity quantum electrodynamics of the graphene cyclotron resonance. By employing a canonical transformation, we derive an effective Hamiltonian for the system comprised of two neighboring Landau levels dressed by the cavity electromagnetic field (integer quantum Hall polaritons). This generalized Dicke Hamiltonian, which contains terms that are quadratic in the electromagnetic field and respects gauge invariance, is then used to calculate thermodynamic properties of the quantum Hall polariton system. Finally, we demonstrate that the generalized Dicke description fails when the graphene sheet is heavily doped, i.e. when the Landau level spectrum of 2D massless Dirac fermions is approximately harmonic. In this case we `integrate out' the Landau levels in valence band and obtain an effective Hamiltonian for the entire stack of Landau levels in conduction band, as dressed by strong light-matter interactions.Comment: 20 pages, 7 figure

    The time as an emergent property of quantum mechanics, a synthetic description of a first experimental approach

    Get PDF
    The "problem of time" in present physics substantially consists in the fact that a straightforward quantization of the general relativistic evolution equation and constraints generates for the Universe wave function the Wheeler-De Witt equation, which describes a static Universe. Page and Wootters considered the fact that there exist states of a system composed by entangled subsystems that are stationary, but one can interpret the component subsystems as evolving: this leads them to suppose that the global state of the universe can be envisaged as one of this static entangled state, whereas the state of the subsystems can evolve. Here we synthetically present an experiment, based on PDC polarization entangled photons, that allows showing with a practical example a situation where this idea works, i.e. a subsystem of an entangled state works as a "clock" of another subsystem

    Non-Linear Beam Splitter in Bose-Einstein Condensate Interferometers

    Full text link
    A beam splitter is an important component of an atomic/optical Mach-Zehnder interferometer. Here we study a Bose Einstein Condensate beam splitter, realized with a double well potential of tunable height. We analyze how the sensitivity of a Mach Zehnder interferometer is degraded by the non-linear particle-particle interaction during the splitting dynamics. We distinguish three regimes, Rabi, Josephson and Fock, and associate to them a different scaling of the phase sensitivity with the total number of particles.Comment: draft, 19 pages, 10 figure

    Clock synchronization with dispersion cancellation

    Get PDF
    The dispersion cancellation feature of pulses which are entangled in frequency is employed to synchronize clocks of distant parties. The proposed protocol is insensitive to the pulse distortion caused by transit through a dispersive medium. Since there is cancellation to all orders, also the effects of slowly fluctuating dispersive media are compensated. The experimental setup can be realized with currently available technology, at least for a proof of principle.Comment: 4 pages, 3 figure

    Photon losses depending on polarization mixedness

    Full text link
    We introduce a quantum channel describing photon losses depending on the degree of polarization mixedness. This can be regarded as a model of quantum channel with correlated errors between discrete and continuous degrees of freedom. We consider classical information over a continuous alphabet encoded on weak coherent states as well as classical information over a discrete alphabet encoded on single photons using dual rail representation. In both cases we study the one-shot capacity of the channel and its behaviour in terms of correlation between losses and polarization mixedness
    • …
    corecore