8 research outputs found

    Effects of Beta-Blockade on Exercise Performance at High Altitude

    Get PDF
    Summary Aims Exposure to high altitude (HA) hypoxia decreases exercise performance in healthy subjects. Although β-blockers are known to affect exercise capacity in normoxia, no data are available comparing selective and nonselective β-adrenergic blockade on exercise performance in healthy subjects acutely exposed to HA hypoxia. We compared the impact of nebivolol and carvedilol on exercise capacity in healthy subjects acutely exposed to HA hypobaric hypoxia. Methods In this double-blind, placebo-controlled trial, 27 healthy untrained sea-level (SL) residents (15 males, age 38.3 ± 12.8 years) were randomized to placebo (n = 9), carvedilol 25 mg b.i.d. (n = 9), or nebivolol 5 mg o.d. (n = 9). Primary endpoints were measures of exercise performance evaluated by cardiopulmonary exercise testing at sea level without treatment, and after at least 3 weeks of treatment, both at SL and shortly after arrival at HA (4559 m). Results HA hypoxia significantly decreased resting and peak oxygen saturation, peak workload, VO2, and heart rate (HR) (P < 0.01). Changes from SL (no treatment) differed among treatments: (1) peak VO2 was better preserved with nebivolol (–22.5%) than with carvedilol (–37.6%) (P < 0.01); (2) peak HR decreased with carvedilol (–43.9 ± 11.9 beats/min) more than with nebivolol (–24.8 ± 13.6 beats/min) (P < 0.05); (3) peak minute ventilation (VE) decreased with carvedilol (–9.3%) and increased with nebivolol (+15.2%) (P= 0.053). Only peak VE changes independently predicted changes in peak VO2 at multivariate analysis (R= 0.62, P < 0.01). Conclusions Exercise performance is better preserved with nebivolol than with carvedilol under acute exposure to HA hypoxia in healthy subjects

    Proteomics Reveals Novel Oxidative and Glycolytic Mechanisms in Type 1 Diabetic Patients' Skin Which Are Normalized by Kidney-Pancreas Transplantation

    Get PDF
    Background: In type 1 diabetes (T1D) vascular complications such as accelerated atherosclerosis and diffused macro-/microangiopathy are linked to chronic hyperglycemia with a mechanism that is not yet well understood. End-stage renal disease (ESRD) worsens most diabetic complications, particularly, the risk of morbidity and mortality from cardiovascular disease is increased several fold. Methods and Findings: We evaluated protein regulation and expression in skin biopsies obtained from T1D patients with and without ESRD, to identify pathways of persistent cellular changes linked to diabetic vascular disease. We therefore examined pathways that may be normalized by restoration of normoglycemia with kidney-pancreas (KP) transplantation. Using proteomic and ultrastructural approaches, multiple alterations in the expression of proteins involved in oxidative stress (catalase, superoxide dismutase 1, Hsp27, Hsp60, ATP synthase δ chain, and flavin reductase), aerobic and anaerobic glycolysis (ACBP, pyruvate kinase muscle isozyme, and phosphoglycerate kinase 1), and intracellular signaling (stratifin-14-3-3, S100-calcyclin, cathepsin, and PPI rotamase) as well as endothelial vascular abnormalities were identified in T1D and T1D+ESRD patients. These abnormalities were reversed after KP transplant. Increased plasma levels of malondialdehyde were observed in T1D and T1D+ESRD patients, confirming increased oxidative stress which was normalized after KP transplant. Conclusions: Our data suggests persistent cellular changes of anti-oxidative machinery and of aerobic/anaerobic glycolysis are present in T1D and T1D+ESRD patients, and these abnormalities may play a key role in the pathogenesis of hyperglycemia-related vascular complications. Restoration of normoglycemia and removal of uremia with KP transplant can correct these abnormalities. Some of these identified pathways may become potential therapeutic targets for a new generation of drugs

    Effects of Beta-Blockade on Exercise Performance at High Altitude: A Randomized, Placebo-Controlled Trial Comparing the Efficacy of Nebivolol versus Carvedilol in Healthy Subjects

    No full text
    Aims Exposure to high altitude (HA) hypoxia decreases exercise performance in healthy subjects. Although beta-blockers are known to affect exercise capacity in normoxia, no data are available comparing selective and nonselective beta-adrenergic blockade on exercise performance in healthy subjects acutely exposed to HA hypoxia. We compared the impact of nebivolol and carvedilol on exercise capacity in healthy subjects acutely exposed to HA hypobaric hypoxia. Methods In this double-blind, placebo-controlled trial, 27 healthy untrained sea-level (SL) residents (15 males, age 38.3 +/- 12.8 years) were randomized to placebo (n = 9), carvedilol 25 mg b.i.d. (n = 9), or nebivolol 5 mg o.d. (n = 9). Primary endpoints were measures of exercise performance evaluated by cardiopulmonary exercise testing at sea level without treatment, and after at least 3 weeks of treatment, both at SL and shortly after arrival at HA (4559 m). Results HA hypoxia significantly decreased resting and peak oxygen saturation, peak workload, VO2, and heart rate (HR) (P < 0.01). Changes from SL (no treatment) differed among treatments: (1) peak VO2 was better preserved with nebivolol (22.5%) than with carvedilol (37.6%) (P < 0.01); (2) peak HR decreased with carvedilol (43.9 +/- 11.9 beats/min) more than with nebivolol (24.8 +/- 13.6 beats/min) (P < 0.05); (3) peak minute ventilation (VE) decreased with carvedilol (9.3%) and increased with nebivolol (+15.2%) (P= 0.053). Only peak VE changes independently predicted changes in peak VO2 at multivariate analysis (R= 0.62, P < 0.01). Conclusions Exercise performance is better preserved with nebivolol than with carvedilol under acute exposure to HA hypoxia in healthy subjects
    corecore