110 research outputs found

    Signal search analysis server

    Get PDF
    Signal search analysis is a general method to discover and characterize sequence motifs that are positionally correlated with a functional site (e.g. a transcription or translation start site). The method has played an instrumental role in the analysis of eukaryotic promoter elements. The signal search analysis server provides access to four different computer programs as well as to a large number of precompiled functional site collections. The programs offered allow: (i) the identification of non-random sequence regions under evolutionary constraint; (ii) the detection of consensus sequence-based motifs that are over- or under-represented at a particular distance from a functional site; (iii) the analysis of the positional distribution of a consensus sequence- or weight matrix-based sequence motif around a functional site; and (iv) the optimization of a weight matrix description of a locally over-represented sequence motif. These programs can be accessed at: http://www.isrec.isb-sib.ch/ss

    EPD and EPDnew, high-quality promoter resources in the next-generation sequencing era

    Get PDF
    The Eukaryotic Promoter Database (EPD), available online at http://epd.vital-it.ch, is a collection of experimentally defined eukaryotic POL II promoters which has been maintained for more than 25 years. A promoter is represented by a single position in the genome, typically the major transcription start site (TSS). EPD primarily serves biologists interested in analysing the motif content, chromatin structure or DNA methylation status of co-regulated promoter subsets. Initially, promoter evidence came from TSS mapping experiments targeted at single genes and published in journal articles. Today, the TSS positions provided by EPD are inferred from next-generation sequencing data distributed in electronic form. Traditionally, EPD has been a high-quality database with low coverage. The focus of recent efforts has been to reach complete gene coverage for important model organisms. To this end, we introduced a new section called EPDnew, which is automatically assembled from multiple, carefully selected input datasets. As another novelty, we started to use chromatin signatures in addition to mRNA 5′tags to locate promoters of weekly expressed genes. Regarding user interfaces, we introduced a new promoter viewer which enables users to explore promoter-defining experimental evidence in a UCSC genome browser windo

    The Eukaryotic Promoter Database: expansion of EPDnew and new promoter analysis tools

    Get PDF
    We present an update of EPDNew (http://epd.vital-it.ch), a recently introduced new part of the Eukaryotic Promoter Database (EPD) which has been described in more detail in a previous NAR Database Issue. EPD is an old database of experimentally characterized eukaryotic POL II promoters, which are conceptually defined as transcription initiation sites or regions. EPDnew is a collection of automatically compiled, organism-specific promoter lists complementing the old corpus of manually compiled promoter entries of EPD. This new part is exclusively derived from next generation sequencing data from high-throughput promoter mapping experiments. We report on the recent growth of EPDnew, its extension to additional model organisms and its improved integration with other bioinformatics resources developed by our group, in particular the Signal Search Analysis and ChIP-Seq web server

    PWMScan: a fast tool for scanning entire genomes with a position-specific weight matrix

    Get PDF
    Transcription factors (TFs) regulate gene expression by binding to specific short DNA sequences of 5 to 20-bp to regulate the rate of transcription of genetic information from DNA to messenger RNA. We present PWMScan, a fast web-based tool to scan server-resident genomes for matches to a user-supplied PWM or TF binding site model from a public database

    Influence of Rotational Nucleosome Positioning on Transcription Start Site Selection in Animal Promoters

    Get PDF
    The recruitment of RNA-Pol-II to the transcription start site (TSS) is an important step in gene regulation in all organisms. Core promoter elements (CPE) are conserved sequence motifs that guide Pol-II to the TSS by interacting with specific transcription factors (TFs). However, only a minority of animal promoters contains CPEs. It is still unknown how Pol-II selects the TSS in their absence. Here we present a comparative analysis of promoters’ sequence composition and chromatin architecture in five eukaryotic model organisms, which shows the presence of common and unique DNA-encoded features used to organize chromatin. Analysis of Pol-II initiation patterns uncovers that, in the absence of certain CPEs, there is a strong correlation between the spread of initiation and the intensity of the 10 bp periodic signal in the nearest downstream nucleosome. Moreover, promoters’ primary and secondary initiation sites show a characteristic 10 bp periodicity in the absence of CPEs. We also show that DNA natural variants in the region immediately downstream the TSS are able to affect both the nucleosome-DNA affinity and Pol-II initiation pattern. These findings support the notion that, in addition to CPEs mediated selection, sequence–induced nucleosome positioning could be a common and conserved mechanism of TSS selection in animal

    SNP2TFBS - a database of regulatory SNPs affecting predicted transcription factor binding site affinity

    Get PDF
    SNP2TFBS is a computational resource intended to support researchers investigating the molecular mechanisms underlying regulatory variation in the human genome. The database essentially consists of a collection of text files providing specific annotations for human single nucleotide polymorphisms (SNPs), namely whether they are predicted to abolish, create or change the affinity of one or several transcription factor (TF) binding sites. A SNP's effect on TF binding is estimated based on a position weight matrix (PWM) model for the binding specificity of the corresponding factor. These data files are regenerated at regular intervals by an automatic procedure that takes as input a reference genome, a comprehensive SNP catalogue and a collection of PWMs. SNP2TFBS is also accessible over a web interface, enabling users to view the information provided for an individual SNP, to extract SNPs based on various search criteria, to annotate uploaded sets of SNPs or to display statistics about the frequencies of binding sites affected by selected SNPs. Homepage: http://ccg.vital-it.ch/snp2tfbs/

    On the importance of anandamide structural features for its interactions with DPPC bilayers: effects on PLA2 activity

    Get PDF
    The acylethanolamide anandamide (AEA) occurs in a variety of mammalian tissues and, as a result of its action on cannabinoid receptors, exhibits several cannabimimetic activities. Moreover, some of its effects are mediated through interaction with an ion channel-type vanilloid receptor. However, the chemical features of AEA suggest that some of its biological effects could be related to physical interactions with the lipidic part of the membrane. The present work studies the effect of AEA-induced structural modifications of the dipalmitoylphosphatidylcholine (DPPC) bilayer on phospholipase A2 (PLA2) activity, which is strictly dependent on lipid bilayer features. This study, performed by 2-dimethylamino-(6-lauroyl)-naphthalene fluorescence, demonstrates that the effect of AEA on PLA2 activity is concentration-dependent. In fact, at low AEA/DPPC molar ratios (from R = 0.001 to R = 0.04), there is an increase of the enzymatic activity, which is completely inhibited for R = 0.1. X-ray diffraction data indicate that the AEA affects DPPC membrane structural properties in a concentration-dependent manner. Because the biphasic effect of increasing AEA concentrations on PLA2 activity is related to the induced modifications of membrane bilayer structural properties, we suggest that AEA-phospholipid interactions may be important to produce, at least in part, some of the similarly biphasic responses of some physiological activities to increasing concentrations of AEA

    The Eukaryotic Promoter Database: expansion of EPDnew and new promoter analysis tools

    Get PDF
    We present an update of EPDNew (http://epd. vital-it. ch), a recently introduced new part of the Eukaryotic Promoter Database (EPD) which has been described in more detail in a previous NAR Database Issue. EPD is an old database of experimentally characterized eukaryotic POL II promoters, which are conceptually defined as transcription initiation sites or regions. EPDnew is a collection of automatically compiled, organism-specific promoter lists complementing the old corpus of manually compiled promoter entries of EPD. This new part is exclusively derived from next generation sequencing data from highthroughput promoter mapping experiments. We report on the recent growth of EPDnew, its extension to additional model organisms and its improved integration with other bioinformatics resources developed by our group, in particular the Signal Search Analysis and ChIP-Seq web servers

    Nucleosome eviction from MHC class II promoters controls positioning of the transcription start site

    Get PDF
    Nucleosome depletion at transcription start sites (TSS) has been documented genome-wide in multiple eukaryotic organisms. However, the mechanisms that mediate this nucleosome depletion and its functional impact on transcription remain largely unknown. We have studied these issues at human MHC class II (MHCII) genes. Activation-induced nucleosome free regions (NFR) encompassing the TSS were observed at all MHCII genes. Nucleosome depletion was exceptionally strong, attaining over 250-fold, at the promoter of the prototypical HLA-DRA gene. The NFR was induced primarily by the transcription factor complex that assembles on the conserved promoter-proximal enhancer situated upstream of the TSS. Functional analyses performed in the context of native chromatin demonstrated that displacing the NFR without altering the sequence of the core promoter induced a shift in the position of the TSS. The NFR thus appears to play a critical role in transcription initiation because it directs correct TSS positioning in vivo. Our results provide support for a novel mechanism in transcription initiation whereby the position of the TSS is controlled by nucleosome eviction rather than by promoter sequenc

    Inhibition of anti-tumor immunity by melanoma cell-derived Activin-A depends on STING

    Get PDF
    The transforming growth factor-β (TGF-β) family member activin A (hereafter Activin-A) is overexpressed in many cancer types, often correlating with cancer-associated cachexia and poor prognosis. Activin-A secretion by melanoma cells indirectly impedes CD8+ T cell-mediated anti-tumor immunity and promotes resistance to immunotherapies, even though Activin-A can be proinflammatory in other contexts. To identify underlying mechanisms, we here analyzed the effect of Activin-A on syngeneic grafts of Braf mutant YUMM3.3 mouse melanoma cells and on their microenvironment using single-cell RNA sequencing. We found that the Activin-A-induced immune evasion was accompanied by a proinflammatory interferon signature across multiple cell types, and that the associated increase in tumor growth depended at least in part on pernicious STING activity within the melanoma cells. Besides corroborating a role for proinflammatory signals in facilitating immune evasion, our results suggest that STING holds considerable potential as a therapeutic target to mitigate tumor-promoting Activin-A signaling at least in melanoma
    • …
    corecore