12 research outputs found

    Evidence of a noncoding transcript of the RIPK2 gene overexpressed in head and neck tumor

    Get PDF
    Receptor-interacting proteins are a family of serine/threonine kinases, which integrate extra and intracellular stress signals caused by different factors, including infections, inflammation and DNA damage. Receptor-interacting serine/threonine-protein kinase 2 (RIP-2) is a member of this family and an important component of the nuclear factor NF-kappa-B signaling pathway. The corresponding human gene RIPK2 generates two transcripts by alternative splicing, the full-length and a short transcript. The short transcript has a truncated 5? sequence, which results in a predicted isoform with a partial kinase domain but able to transduce signals through its caspase recruitment domain. In this study, the expression of RIPK2 was investigated in human tissue samples and, in order to determine if both transcripts are similarly regulated at the transcriptional level, cancer cell lines were submitted to temperature and acid stresses. We observed that both transcripts are expressed in all tissues analyzed, with higher expression of the short one in tumor samples, and they are differentially regulated following temperature stress. Despite transcription, no corresponding protein for the short transcript was detected in tissues and cell lines analyzed. We propose that the shorter transcript is a noncoding RNA and that its presence in the cell may play regulatory roles and affect inflammation and other biological processes related to the kinase activity of RIP-2.Fil: Mancini Villagra, Ulises Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Biotecnología y Biología Molecular. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Biotecnología y Biología Molecular; ArgentinaFil: da Cunha, Bianca R.. Universidade de Sao Paulo; BrasilFil: Polachini, Giovana M.. No especifíca;Fil: Tiago, Tiago Henrique. No especifíca;Fil: Carlos H. T. P. da Silva. Universidade de Sao Paulo; BrasilFil: Feitosa, Olavo A.. Universidade de Sao Paulo; BrasilFil: Fukuyama, Erica E.. Arnaldo Vieira de Carvalho Cancer Institute; BrasilFil: López, Rossana V. M.. No especifíca;Fil: Dias Neto, Emmanuel. Universidade de Sao Paulo; BrasilFil: Nunes, Fabio D.. Universidade de Sao Paulo; BrasilFil: Severino, Patricia. Hospital Israelita Albert Einstein; BrasilFil: Tajara, Eloiza Helena Tajara. Universidade de Sao Paulo; Brasi

    Evidence of a noncoding transcript of the RIPK2 gene overexpressed in head and neck tumor

    Get PDF
    Receptor-interacting proteins are a family of serine/threonine kinases, which integrate extra and intracellular stress signals caused by different factors, including infections, inflammation and DNA damage. Receptor-interacting serine/threonine-protein kinase 2 (RIP-2) is a member of this family and an important component of the nuclear factor NF-kappa-B signaling pathway. The corresponding human gene RIPK2 generates two transcripts by alternative splicing, the full-length and a short transcript. The short transcript has a truncated 5’ sequence, which results in a predicted isoform with a partial kinase domain but able to transduce signals through its caspase recruitment domain. In this study, the expression of RIPK2 was investigated in human tissue samples and, in order to determine if both transcripts are similarly regulated at the transcriptional level, cancer cell lines were submitted to temperature and acid stresses. We observed that both transcripts are expressed in all tissues analyzed, with higher expression of the short one in tumor samples, and they are differentially regulated following temperature stress. Despite transcription, no corresponding protein for the short transcript was detected in tissues and cell lines analyzed. We propose that the shorter transcript is a noncoding RNA and that its presence in the cell may play regulatory roles and affect inflammation and other biological processes related to the kinase activity of RIP-2.Instituto de Biotecnologia y Biologia Molecula

    Genomics and proteomics approaches to the study of cancer-stroma interactions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The development and progression of cancer depend on its genetic characteristics as well as on the interactions with its microenvironment. Understanding these interactions may contribute to diagnostic and prognostic evaluations and to the development of new cancer therapies. Aiming to investigate potential mechanisms by which the tumor microenvironment might contribute to a cancer phenotype, we evaluated soluble paracrine factors produced by stromal and neoplastic cells which may influence proliferation and gene and protein expression.</p> <p>Methods</p> <p>The study was carried out on the epithelial cancer cell line (Hep-2) and fibroblasts isolated from a primary oral cancer. We combined a conditioned-medium technique with subtraction hybridization approach, quantitative PCR and proteomics, in order to evaluate gene and protein expression influenced by soluble paracrine factors produced by stromal and neoplastic cells.</p> <p>Results</p> <p>We observed that conditioned medium from fibroblast cultures (FCM) inhibited proliferation and induced apoptosis in Hep-2 cells. In neoplastic cells, 41 genes and 5 proteins exhibited changes in expression levels in response to FCM and, in fibroblasts, 17 genes and 2 proteins showed down-regulation in response to conditioned medium from Hep-2 cells (HCM). Nine genes were selected and the expression results of 6 down-regulated genes (<it>ARID4A</it>, <it>CALR</it>, <it>GNB2L1</it>, <it>RNF10</it>, <it>SQSTM1</it>, <it>USP9X</it>) were validated by real time PCR.</p> <p>Conclusions</p> <p>A significant and common denominator in the results was the potential induction of signaling changes associated with immune or inflammatory response in the absence of a specific protein.</p

    Differentially expressed proteins in positive versus negative HNSCC lymph nodes

    No full text
    Abstract Background Lymph node metastasis is one of the most important prognostic factors in head and neck squamous cell carcinomas (HNSCCs) and critical for delineating their treatment. However, clinical and histological criteria for the diagnosis of nodal status remain limited. In the present study, we aimed to characterize the proteomic profile of lymph node metastasis from HNSCC patients. Methods In the present study, we used one- and two-dimensional electrophoresis and mass spectrometry analysis to characterize the proteomic profile of lymph node metastasis from HNSCC. Results Comparison of metastatic and non-metastatic lymph nodes showed 52 differentially expressed proteins associated with neoplastic development and progression. The results reinforced the idea that tumors from different anatomical subsites have dissimilar behaviors, which may be influenced by micro-environmental factor including the lymphatic network. The expression pattern of heat shock proteins and glycolytic enzymes also suggested an effect of the lymph node environment in controlling tumor growth or in metabolic reprogramming of the metastatic cell. Our study, for the first time, provided direct evidence of annexin A1 overexpression in lymph node metastasis of head and neck cancer, adding information that may be useful for diagnosing aggressive disease. Conclusions In brief, this study contributed to our understanding of the metastatic phenotype of HNSCC and provided potential targets for diagnostic in this group of carcinomas

    Proteomic Approaches Identify Members of Cofilin Pathway Involved in Oral Tumorigenesis

    Get PDF
    <div><p>The prediction of tumor behavior for patients with oral carcinomas remains a challenge for clinicians. The presence of lymph node metastasis is the most important prognostic factor but it is limited in predicting local relapse or survival. This highlights the need for identifying biomarkers that may effectively contribute to prediction of recurrence and tumor spread. In this study, we used one- and two-dimensional gel electrophoresis, mass spectrometry and immunodetection methods to analyze protein expression in oral squamous cell carcinomas. Using a refinement for classifying oral carcinomas in regard to prognosis, we analyzed small but lymph node metastasis-positive versus large, lymph node metastasis-negative tumors in order to contribute to the molecular characterization of subgroups with risk of dissemination. Specific protein patterns favoring metastasis were observed in the “more-aggressive” group defined by the present study. This group displayed upregulation of proteins involved in migration, adhesion, angiogenesis, cell cycle regulation, anti-apoptosis and epithelial to mesenchymal transition, whereas the “less-aggressive” group was engaged in keratinocyte differentiation, epidermis development, inflammation and immune response. Besides the identification of several proteins not yet described as deregulated in oral carcinomas, the present study demonstrated for the first time the role of cofilin-1 in modulating cell invasion in oral carcinomas.</p> </div

    Cofilin pathway.

    No full text
    <p>Microenvironmental stimuli signal through Rho-GTPases and their regulating kinases (ROCK1 and Pak-1), stimulating LIMK to phosphorylate and inactivate cofilin-1. Otherwise, SSH phosphatases dephosphorylate cofilin. Rap proteins may increase the enzymatic activity of SSHs, possibly by promoting their release from 14-3-3 proteins. Cofilin is sequestered by PIP2 and released after hydrolysis of PIP2 by phosphorylated PLC to IP3 and DAG. The active cofilin severs “old” actin filaments to generate free actin barbed ends. ATP-actin assembles into these barbed ends and ADP-actin subunits are, in turn, dissociated from the pointed end. Free actin monomers exchange ADP to ATP, frequently with the help of profilin and CAP proteins. ARP2/3 complex binds to F-actin and nucleates the growth of daughter filaments, generating a dendritic network at the leading edge of migratory cells. Other members of this pathway include Hsp90, which promotes stability of LIMK, and CAPZ, which interacts with barbed ends and inhibits filament assembly. ARP = actin-related protein 2/3 complex; CAP = adenylyl cyclase-associated protein 1; CAPZ = F-actin-capping protein subunit alpha-1; CFL = cofilin-1; F-actin = filamentous actin; DAG =  diacylglycerol; G-actin = globular actin; GF = growth factor; HSP90 = heat shock protein HSP 90-alpha; IP3 = inositoltrisphosphate; LIMK = LIM kinases; Pak-1 = serine/threonine-protein kinase PAK 1; PIP2 = phosphatidylinositol-4-5-biphosphate; PLC = phospholipase C; RAP = Ras-related protein; ROCK-1 = Rho-associated protein kinase 1; SSH = slingshot phosphatase.</p

    Immunodetection of keratin 4 expression in OSCC samples. Immunohistochemistry analysis:

    No full text
    <p>pattern of keratin 4 immunostaining in (A) superficial layers of epithelium in margin showing intense positivity in stratum corneum (A, insert); (B) absence of keratin 4 immunostaining in nests of well differentiated and (C) poorly differentiated areas of OSCC. Scale bar indicates 100 µm. <b>Western blot</b>: (D) tumor samples (lanes 1, 3, 5, 7) and matched margins (lanes 2, 4, 6, 8) from patients with T1N0, T4N2, T4N1 and T4N1 carcinomas, respectively; (E) Surgical margin (lane 1) and tumor samples (lanes 2, 3, 4, 5) from patients with T4N2, T4N2, T4N2, T1N0 and T2N2, respectively. β-actin was used as an internal control. MW, PageRuler™ Prestained Protein Ladder.</p

    Immunodetection <i>of</i> cofilin-1 and p-cofilin in OSCC samples.

    No full text
    <p>Immunostaining for total cofilin-1 and p-cofilin in FFPE sections of (A and B, respectively) surgical margins and (C and D, respectively) OSCC samples. Note the low positivity of total cofilin (A) and the nuclear staining for p-cofilin (B) in the more basal layers of epithelium in margins, and (C and D, inserts) the more intense staining of tumor cell nuclei for p-cofilin than for total cofilin. Figures and inserts = 100X and 400X magnification, respectively.</p

    siRNA-mediated knockdown of cofilin-1 resulted in decreased invasive ability of oral cancer cells.

    No full text
    <p>Western blot analysis showed reduced levels of (A) cofilin-1 in <b><i>SCC-9 cells</i></b><i> t</i>ransfected with different concentrations of siRNA (siCofilin I) for 48 h and of (B) cofilin-1 and p-cofilin in SCC-9 cells transfected with 20 nM siCofilin I for 48 h. (C) Immunofluorescence analysis of cofilin-1 knockdown SCC-9 cells (siCofilin I) using anti-p-cofilin antibody (green). (D) Invasion assays using Matrigel-coated filters were performed on SCC-9 and Cal 27 cells (cofilin-1 knockdown cells and controls). Bar graph represents the mean ± S.E. of the number cells that invaded through the Matrigel from three independent experiments (Student’s <i>t</i> test, * = p<0.01).</p
    corecore