453 research outputs found
Two new records of Polystichum (Dryopteridaceae) for the Argentine Flora
En este trabajo, dos nuevos taxones de Polystichum se registran para la flora de helechos deArgentina: P. subintegerrimum (Hook. & Arn.) R. Rodr. hallado en la región de los Bosques Patagónicos yP. platylepis Fée colectado en Misiones; hasta ahora, ambas especies eran consideradas endémicas deChile y Brasil, respectivamente. Se describen e ilustran ambas especies.In this paper, two new records for the Argentina fern-flora are reported: P. subintegerrimum (Hook. & Arn.) R. Rodr. found in the Patagonian Forests and P. platylepis Fée collected in Misiones; both have been considered endemic for Chile and Brazil, respectively. The species are described and illustrated.Fil: Morero, Rita. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; Argentina. Universidad Nacional de Cordoba. Facultad de Ciencias Quimicas; ArgentinaFil: Giorgis, Melisa Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Condack, Joao P. S.. Universidade Federal do Rio de Janeiro; BrasilFil: Vidoz, Félix F.. Parque Nacional Lago Puelo; ArgentinaFil: Barboza, Gloria Estela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; Argentina. Universidad Nacional de Cordoba. Facultad de Ciencias Quimicas; Argentin
One-hour post-load plasma glucose levels associated with decreased insulin sensitivity and secretion and early makers of cardiometabolic risk.
PURPOSE: Obese adults with normal glucose tolerance (NGT) but with 1-hour post-load plasma glucose (1hPG) ≥ 155 mg/dl are at higher risk of developing type 2 diabetes (T2D) and cardiometabolic complications. Little information is available for the pediatric population, where recently, a lower cutoff, 132.5 mg/dl, has been suggested as being more sensitive to identify subjects at risk of T2D. Our aim was to assess whether obese Caucasian youth with 1hPG ≥ 132.5 mg/dl have worse insulin sensitivity and secretion and a worse cardiometabolic profile compared to obese youth with 1hPG < 132.5 mg/dl. METHODS: Medical records of 244 (43% male; age: 11.1 ± 2.7years) overweight/obese children and adolescents, who had undergone an oral glucose tolerance test (OGTT), were retrieved. Anthropometric and biochemical data were collected from the hard copy archive. Indexes of insulin resistance (HOMA-IR), insulin sensitivity (WBISI), and insulin secretion (Insulinogenic Index, Disposition Index) were calculated. RESULTS: Of the 244 records analyzed, 215 fulfilled criteria for NGT and had complete biochemical data. Among NGT patients, 42 (19.5%) showed 1hPG ≥ 132.5 mg/dL (high-NGT), while the remaining had 1hPG < 132.5 mg/dL (low-NGT). The high-NGT group showed a higher male prevalence (59.5 vs 37%), lower Disposition Index (0.54 [0.39-0.71] vs 0.79 [0.47-1.43]), and WBISI (0.24 [0.18-0.35] vs 0.33 [0.23-0.50]) than the low-NGT group. High-NGT subjects also showed a trend towards lower HDL-cholesterol and higher triglycerides/HDL-cholesterol ratio (2.13 [1.49-3.41] vs 1.66 [1.24-2.49]). CONCLUSIONS: In overweight/obese NGT Caucasian youth a 1hPG ≥ 132.5 mg/dL was able to identify those with impaired insulin sensitivity and secretion and a trend towards a worse cardio-metabolic profile, a group likely at risk for future T2D
Reverse Micelle Strategy for the Synthesis of MnOx-TiO2Active Catalysts for NH3-Selective Catalytic Reduction of NOxat Both Low Temperature and Low Mn Content
MnOx-TiO2catalysts (0, 1, 5, and 10 wt % Mn nominal content) for NH3-SCR (selective catalytic reduction) of NOxhave been synthesized by the reverse micelle-assisted sol-gel procedure, with the aim of improving the dispersion of the active phase, usually poor when obtained by other synthesis methods (e.g., impregnation) and thereby lowering its amount. For comparison, a sample at nominal 10 wt % Mn was obtained by impregnation of the (undoped) TiO2sample. The catalysts were characterized by using an integrated multitechnique approach, encompassing X-ray diffraction followed by Rietveld refinement, micro-Raman spectroscopy, N2isotherm measurement at −196 °C, energy-dispersive X-ray analysis, diffuse reflectance UV-vis spectroscopy, temperature-programmed reduction technique, and X-ray photoelectron spectroscopy. The obtained results prove that the reverse micelle sol-gel approach allowed for enhancing the catalytic activity, in that the catalysts were active in a broad temperature range at a substantially low Mn loading, as compared to the impregnated catalyst. Particularly, the 5 wt % Mn catalyst showed the best NH3-SCR activity in terms of both NOxconversion (ca. 90%) and the amount of produced N2O (ca. 50 ppm) in the 200-250 °C temperature range
In situ Raman analyses of the soot oxidation reaction over nanostructured ceria-based catalysts
Abstract To reduce the emissions of internal combustion engines, ceria-based catalysts have been widely investigated as possible alternatives to the more expensive noble metals. In the present work, a set of four different ceria-based materials was prepared via hydrothermal synthesis, studying the effect of Cu and Mn as dopants both in binary and ternary oxides. In situ Raman analyses were carried out to monitor the behaviour of defect sites throughout thermal cycles and during the soot oxidation reaction. Despite ceria doped with 5% of Cu featured the highest specific surface area, reducibility and amount of intrinsic and extrinsic defects, a poor soot oxidation activity was observed through the standard activity tests. This result was confirmed by the calculation of soot conversion curves obtained through a newly proposed procedure, starting from the Raman spectra collected during the in situ tests. Moreover, Raman analyses highlighted that new defectiveness was produced on the Cu-doped catalyst at high temperature, especially after soot conversion, while a slight increase of the defect band and a total reversibility were observed in case of the ternary oxide and pure/Mn-doped ceria, respectively. The major increment was related to the extrinsic defects component; tests carried out in different atmospheres suggested the assignment of this feature to vacancy-free sites containing oxidized doping cations. Its increase at the end of the tests can be an evidence of peroxides and superoxides deactivation on catalysts presenting excessive oxygen vacancy concentrations. Instead, ceria doped with 5% of Mn exhibited the best soot oxidation activity, thanks to an intermediate density of oxygen vacancies and to its well-defined morphology
Chemical modulation of the 1-(Piperidin-4-yl)-1,3-dihydro-2h-benzo[d]imidazole-2-one scaffold as a novel NLRP3 inhibitor
In the search for new chemical scaffolds able to afford NLRP3 inflammasome inhibitors, we used a pharmacophore-hybridization strategy by combining the structure of the acrylic acid derivative INF39 with the 1-(piperidin-4-yl)1,3-dihydro-2H-benzo[d]imidazole-2-one substructure present in HS203873, a recently identified NLRP3 binder. A series of differently modulated benzo[d]imidazole-2-one derivatives were designed and synthesised. The obtained compounds were screened in vitro to test their ability to inhibit NLRP3-dependent pyroptosis and IL-1β release in PMA-differentiated THP-1 cells stimulated with LPS/ATP. The selected compounds were evaluated for their ability to reduce the ATPase activity of human recombinant NLRP3 using a newly developed assay. From this screening, compounds 9, 13 and 18, able to concentration-dependently inhibit IL-1β release in LPS/ATP-stimulated human macrophages, emerged as the most promising NLRP3 inhibitors of the series. Computational simulations were applied for building the first complete model of the NLRP3 inactive state and for identifying possible binding sites available to the tested compounds. The analyses led us to suggest a mechanism of protein–ligand binding that might explain the activity of the compounds
Impact of the inversion time on regional brain perfusion estimation with clinical arterial spin labeling protocols
Objective:
Evaluating the impact of the Inversion Time (TI) on regional perfusion estimation in a pediatric cohort using Arterial Spin Labeling (ASL).
Materials and methods:
Pulsed ASL (PASL) was acquired at 3 T both at TI 1500 ms and 2020 ms from twelve MRI-negative patients (age range 9–17 years). A volume of interest (VOIs) and a voxel-wise approach were employed to evaluate subject-specific TI-dependent Cerebral Blood Flow (CBF) differences, and grey matter CBF Z-score differences. A visual evaluation was also performed.
Results:
CBF was higher for TI 1500 ms in the proximal territories of the arteries (PTAs) (e.g. insular cortex and basal ganglia — P < 0.01 and P < 0.05 from the VOI analysis, respectively), and for TI 2020 ms in the distal territories of the arteries (DTAs), including the watershed areas (e.g. posterior parietal and occipital cortex — P < 0.001 and P < 0.01 from the VOI analysis, respectively). Similar differences were also evident when analyzing patient-specific CBF Z-scores and at a visual inspection.
Conclusions:
TI influences ASL perfusion estimates with a region-dependent effect. The presence of intraluminal arterial signal in PTAs and the longer arterial transit time in the DTAs (including watershed areas) may account for the TI-dependent differences. Watershed areas exhibiting a lower perfusion signal at short TIs (~ 1500 ms) should not be misinterpreted as focal hypoperfused areas
PTX3 shapes profibrotic immune cells and epithelial/fibroblast repair and regeneration in a murine model of pulmonary fibrosis
The long pentraxin 3 (PTX3) is protective in different pathologies but was not analyzed in-depth in Idiopathic Pulmonary Fibrosis (IPF). Here, we have explored the influence of PTX3 in the bleomycin (BLM)-induced murine model of IPF by looking at immune cells (macrophages, mast cells, T cells) and stemness/regenerative markers of lung epithelium (SOX2) and fibro-blasts/myofibroblasts (CD44) at different time points that retrace the progression of the disease from onset at day 14, to full-blown disease at day 21, to incomplete regression at day 28. We took advantage of transgenic PTX3 overexpressing mice (Tie2-PTX3) and Ptx3 null ones (PTX3-KO) in which pulmonary fibrosis was induced. Our data have shown that PTX3 overexpression in Tie2-PTX3 compared to WT or PTX3-KO: reduced CD68+ and CD163+ macrophages and the Tryptase+ mast cells during the whole experimental time; on the contrary, CD4+ T cells are consistently present on day 14 and dramatically decreased on day 21; CD8+ T cells do not show significant differences on day 14, but are significantly reduced on day 21; SOX2 is reduced on days 14 and 21; CD44 is reduced on day 21. Therefore, PTX3 could act on the proimmune and fibrogenic microenvironment to prevent fibrosis in BLM-treated mice
Cerium‐Copper Oxides Synthesized in a Multi‐Inlet Vortex Reactor as Effective Nanocatalysts for CO and Ethene Oxidation Reactions
In this study, a set of CuCeOx catalysts was prepared via the coprecipitation method using a Multi‐Inlet Vortex Reactor: the Cu wt.% content is 5, 10, 20, 30 and 60. Moreover, pure CeO2 and CuO were synthesized for comparison purposes. The physico‐chemical properties of this set of samples were investigated by complementary techniques, e.g., XRD, N2 physisorption at −196 °C, Scanning Electron Microscopy, XPS, FT‐IR, Raman spectroscopy and H2‐TPR. Then, the CuCeOx catalysts were tested for the CO and ethene oxidation reactions. As a whole, all the prepared samples presented good catalytic performances towards the CO oxidation reaction (1000 ppm CO, 10 vol.% O2/N2): the most promising catalyst was the 20%CuCeOx (complete CO conversion at 125 °C), which exhibited a long‐term thermal stability. Similarly, the oxidative activity of the catalysts were evaluated using a gaseous mixture containing 500 ppm C2H4, 10 vol.% O2/N2. Accordingly, for the ethene oxidation reaction, the 20%CuCeOx catalyst evidenced the best catalytic properties. The elevated catalytic activity towards CO and ethene oxidation was mainly ascribed to synergistic interactions between CeO2 and CuO phases, as well as to the high amount of surface‐chemisorbed oxygen species and structural defects
Investigation of Cu-doped ceria through a combined spectroscopic approach: Involvement of different catalytic sites in CO oxidation
Copper-ceria mixed oxides are widely considered promising catalysts for oxidation reactions, especially when the participation of lattice oxygen is required. However, the mechanistic understanding of these catalytic systems is still incomplete, due to their considerable complexity. In fact, copper doping of ceria results in the formation of a significant number of different interacting sites in continuous evolution during the catalytic processes. In the present study, pure and Cu-doped ceria samples were deeply investigated through combined spectroscopic techniques, i.e. XPS, EPR, and in situ FTIR and Raman spectroscopy. Through this systematic approach, the copper sites and lattice defects responsible for the enhanced CO oxidation activity of doped ceria were eluci-dated. Superficial Cu+ species and small Cu0 clusters promote the adsorption of CO at low temperature, while isolated Cu2+ monomers and dimers well-dispersed in the ceria matrix foster lattice oxygen mobility, involving the sub-surface in the redox phenomena. Consequently, the structure of Cu-doped ceria undergoes substantial modifications throughout CO oxidation in the absence of O2, with the formation of oxygen vacancy clusters. Anyway, these changes are reversible, and structural reorganization in the presence of O2 can occur even at room temperature. The excellent performance of Cu-doped ceria eventually stems from the effective cooperation among the different catalytic sites in the mixed oxide
- …