18 research outputs found

    Intense terahertz pulses from SPARC-LAB coherent radiation source

    Get PDF
    The linac-based Terahertz source at the SPARC_LAB test facility is able to gene rate highly intense Terahertz broadband pulses via coherent transition radiation (CTR) from high brightness electron beams. The THz pulse duration is typically down to 100 fs RMS and can be tuned through the electron bunch duration and shaping. The measured stored energy in a single THz pulse has reached 40 μ J, which corresponds to a peak electric field of 1.6 MV/cm at the THz focus. Here we present the main features, in particular spatial and sp ectral distributions and energy characterizations of the SPARC_LAB THz source, which is very competitive for investigations in Condensed Matter, as well as a valid tool for electron beam longitudinal diagnostics

    Nonlinear quantum magnetophononics in SrCu2_2(BO3_3)2_2

    Full text link
    Harnessing the most advanced capabilities of quantum technologies will require the ability to control macroscopic quantum states of matter. Quantum magnetic materials provide a valuable platform for realizing highly entangled many-body quantum systems, and have been used to investigate phenomena ranging from quantum phase transitions (QPTs) to fractionalization, topological order and the entanglement structure of the quantum wavefunction. Although multiple studies have controlled their properties by static applied pressures or magnetic fields, dynamical control at the fundamental timescales of their magnetic interactions remains completely unexplored. However, major progress in the technology of ultrafast laser pulses has enabled the dynamical modification of electronic properties, and now we demonstrate the ultrafast control of quantum magnetism. This we achieve by a magnetophononic mechanism, the driving of coherent lattice displacements to produce a resonant excitation of the quantum spin dynamics. Specifically, we apply intense terahertz laser pulses to excite a collective spin state of the quantum antiferromagnet SrCu2_2(BO3_3)2_2 by resonance with the nonlinear mixing frequency of the driven phonons that modulate the magnetic interactions. Our observations indicate a universal mechanism for controlling nonequilibrium quantum many-body physics on timescales many orders of magnitude faster than those achieved to date.Comment: 24 pages, 9 figure

    Terahertz displacive excitation of a coherent Raman-active phonon in V2O3

    Get PDF
    Nonlinear processes involving frequency-mixing of light fields set the basis for ultrafast coherent spectroscopy of collective modes in solids. In certain semimetals and semiconductors, generation of coherent phonon modes can occur by a displacive force on the lattice at the difference-frequency mixing of a laser pulse excitation on the electronic system. Here, as a low-frequency counterpart of this process, we demonstrate that coherent phonon excitations can be induced by the sum-frequency components of an intense terahertz light field, coupled to intraband electronic transitions. This nonlinear process leads to charge-coupled coherent dynamics of Raman-active phonon modes in the strongly correlated metal VO. Our results show an alternative up-conversion pathway for the optical control of Raman-active modes in solids mediated by terahertz-driven electronic excitation

    Tailoring of Highly Intense THz Radiation Through High Brightness Electron Beams Longitudinal Manipulation

    No full text
    The ultra-short electron beams, produced through the velocity bunching compression technique at the SPARC_LAB test Facility (Frascati, Italy), are used to produce Coherent Transition Radiation in the terahertz (THz) range. This paper reports on the main features of this THz source, which have a spectral coverage up to 5 THz, a pulse duration down to 100 fs, and an energy per pulse on the order of tens of μJ. These figures of merits open the possibility to apply this source for nonlinear and THz pump-probe experiments in Solid-State Physics and material science

    Overcoming the thermal regime for the electric-field driven Mott transition in vanadium sesquioxide

    No full text
    Thermal effects limit the speed of the electrically driven insulator-metal transition in V2O3 to tens of picoseconds. Here the authors show that under an intense THz-electric-field excitation the thermal regime can be overcome, achieving a purely electronic transition on ultrafast timescales

    Leggett mode controlled by light pulses

    No full text
    The discovery of symmetry-broken phases that host multiple order parameters, such as multiband superconductors(1,2), has triggered an enormous interest in condensed matter physics. However, many challenges continue to hinder the fundamental understanding of how to control the collective modes corresponding to these multiple order parameters(3,4). Here we demonstrate that, in full analogy with phonons, Raman-active electronic collective modes can be manipulated by intense light pulses. By tuning a sum-frequency excitation process, we selectively trigger collective excitations that can be ascribed to the relative phase fluctuations between two superconducting order parameters-the so-called Leggett mode-in the multiband superconductor MgB2. The excellent comparison between experiments and theory establishes a general protocol for the advanced control of Raman-active electronic modes in symmetry-broken quantum phases of matter

    Supercontinuum generation in OHQ-N2S organic crystal driven by intense terahertz fields

    No full text
    A laser supercontinuum is generated by cross-phase modulation (XPM) driven by an intense terahertz (THz) field in organic crystal OHQ-N2S. In this highly nonlinear medium, the THz electric field induces a time-varying optical phase modulation, which causes a spectacular spectral broadening and shifting of a co-propagating near-infrared laser pulse. The effect is enabled by the large electro-optic coefficient, the low absorption, and the good velocity matching between the laser and the THz pulse over the OHQ-N2S crystal thickness. The XPM occurs when the THz field is aligned along the polar axis of the OHQ-N2S. The results display a promising pathway for ultrafast control of the spectral and temporal properties of laser pulses using THz stimuli

    Terahertz plasmonic excitations in Bi2Se3 topological insulator

    No full text
    After the discovery of Dirac electrons in condensed matter physics, more specifically in graphene and its derivatives, their potentialities in the fields of plasmonics and photonics have been readily recognized, leading to a plethora of applications in active and tunable optical devices. Massless Dirac carriers have been further found in three-dimensional topological insulators. These exotic quantum systems have an insulating gap in the bulk and intrinsic Dirac metallic states at any surface, sustaining not only single-particle excitations but also plasmonic collective modes. In this paper we will review the plasmon excitations in different microstructures patterned on Bi2Se3 topological insulator thin films as measured by terahertz spectroscopy. We discuss the dependence of the plasmon absorption versus the microstructure shape, wavevector, and magnetic field. Finally we will discuss the topological protection of both the Dirac single-particle and plasmon excitations
    corecore