51 research outputs found

    India\u27s ban on antimicrobial fixed-dose combinations: Winning the battle, losing the war?

    Get PDF
    BACKGROUND AND OBJECTIVES: India, the country with the largest market availability of antimicrobial fixed-dose combinations (FDCs), banned certain antimicrobial FDCs in September 2018. Our objective was to examine the impact of Government ban on the sales of antimicrobial FDCs. METHODS: The sales patterns of 14 of the 26 banned antimicrobial FDCs were analyzed using monthly private sector drug sales data from IQVIA (a comprehensive and nationally representative drug sales database) between January 2018 and December 2019. We carried out descriptive analyses to evaluate the trend in sales over time for banned and non-banned antimicrobial FDCs using cumulative sales volumes. RESULTS: Overall, the cumulative sales volume of banned antimicrobial FDCs declined by 75% between January and September 2018 and the same months of 2019, although some banned FDCs continued to be available in significant volumes. The effectiveness of the ban was offset by several pathways. First, the sales of combinations containing moieties belonging to the same drug-classes as the antimicrobials in the banned FDCs increased after the ban. Second, while certain formulations of particular combinations were banned, the sales of other non-banned formulation of these combinations increased. Third, in some cases, products containing new non-antimicrobial components added to the banned combinations remained available. INTERPRETATION AND CONCLUSIONS: While sales of the banned antimicrobial FDCs decreased in 2019, we identified several mechanisms that counterbalanced the ban, including implementation failure, rising sales of congeners, and products with additional non-antimicrobial components

    Antibiotic overuse in the primary health care setting: A secondary data analysis of standardised patient studies from India, China and Kenya

    Get PDF
    INTRODUCTION: Determining whether antibiotic prescriptions are inappropriate requires knowledge of patients\u27 underlying conditions. In low-income and middle-income countries (LMICs), where misdiagnoses are frequent, this is challenging. Additionally, such details are often unavailable for prescription audits. Recent studies using standardised patients (SPs) offer a unique opportunity to generate unbiased prevalence estimates of antibiotic overuse, as the research design involves patients with predefined conditions. METHODS: Secondary analyses of data from nine SP studies were performed to estimate the proportion of SP-provider interactions resulting in inappropriate antibiotic prescribing across primary care settings in three LMICs (China, India and Kenya). In all studies, SPs portrayed conditions for which antibiotics are unnecessary (watery diarrhoea, presumptive tuberculosis (TB), angina and asthma). We conducted descriptive analyses reporting overall prevalence of antibiotic overprescribing by healthcare sector, location, provider qualification and case. The WHO Access-Watch-Reserve framework was used to categorise antibiotics based on their potential for selecting resistance. As richer data were available from India, we examined factors associated with antibiotic overuse in that country through hierarchical Poisson models. RESULTS: Across health facilities, antibiotics were given inappropriately in 2392/4798 (49.9%, 95% CI 40.8% to 54.5%) interactions in India, 83/166 (50.0%, 95% CI 42.2% to 57.8%) in Kenya and 259/899 (28.8%, 95% CI 17.8% to 50.8%) in China. Prevalence ratios of antibiotic overuse in India were significantly lower in urban versus rural areas (adjusted prevalence ratio (aPR) 0.70, 95% CI 0.52 to 0.96) and higher for qualified versus non-qualified providers (aPR 1.55, 95% CI 1.42 to 1.70), and for presumptive TB cases versus other conditions (aPR 1.19, 95% CI 1.07 to 1.33). Access antibiotics were predominantly used in Kenya (85%), but Watch antibiotics (mainly quinolones and cephalosporins) were highly prescribed in India (47.6%) and China (32.9%). CONCLUSION: Good-quality SP data indicate alarmingly high levels of antibiotic overprescription for key conditions across primary care settings in India, China and Kenya, with broad-spectrum agents being excessively used in India and China

    Antibiotic prescription practices in primary care in low- and middle-income countries: A systematic review and meta-analysis

    Get PDF
    BACKGROUND: The widespread use of antibiotics plays a major role in the development and spread of antimicrobial resistance. However, important knowledge gaps still exist regarding the extent of their use in low- and middle-income countries (LMICs), particularly at the primary care level. We performed a systematic review and meta-analysis of studies conducted in primary care in LMICs to estimate the prevalence of antibiotic prescriptions as well as the proportion of such prescriptions that are inappropriate. METHODS AND FINDINGS: We searched PubMed, Embase, Global Health, and CENTRAL for articles published between 1 January 2010 and 4 April 2019 without language restrictions. We subsequently updated our search on PubMed only to capture publications up to 11 March 2020. Studies conducted in LMICs (defined as per the World Bank criteria) reporting data on medicine use in primary care were included. Three reviewers independently screened citations by title and abstract, whereas the full-text evaluation of all selected records was performed by 2 reviewers, who also conducted data extraction and quality assessment. A modified version of a tool developed by Hoy and colleagues was utilized to evaluate the risk of bias of each included study. Meta-analyses using random-effects models were performed to identify the proportion of patients receiving antibiotics. The WHO Access, Watch, and Reserve (AWaRe) framework was used to classify prescribed antibiotics. We identified 48 studies from 27 LMICs, mostly conducted in the public sector and in urban areas, and predominantly based on medical records abstraction and/or drug prescription audits. The pooled prevalence proportion of antibiotic prescribing was 52% (95% CI: 51%-53%), with a prediction interval of 44%-60%. Individual studies\u27 estimates were consistent across settings. Only 9 studies assessed rationality, and the proportion of inappropriate prescription among patients with various conditions ranged from 8% to 100%. Among 16 studies in 15 countries that reported details on prescribed antibiotics, Access-group antibiotics accounted for more than 60% of the total in 12 countries. The interpretation of pooled estimates is limited by the considerable between-study heterogeneity. Also, most of the available studies suffer from methodological issues and report insufficient details to assess appropriateness of prescription. CONCLUSIONS: Antibiotics are highly prescribed in primary care across LMICs. Although a subset of studies reported a high proportion of inappropriate use, the true extent could not be assessed due to methodological limitations. Yet, our findings highlight the need for urgent action to improve prescription practices, starting from the integration of WHO treatment recommendations and the AWaRe classification into national guidelines. TRIAL REGISTRATION: PROSPERO registration number: CRD42019123269

    Integrating tuberculosis and COVID-19 molecular testing in Lima, Peru : a cross-sectional, diagnostic accuracy study

    Get PDF
    Integrated molecular testing could be an opportunity to detect and provide care for both tuberculosis and COVID-19. Many high tuberculosis burden countries, such as Peru, have existing GeneXpert systems for tuberculosis testing with GeneXpert Xpert MTB/RIF Ultra (Xpert Ultra), and a GeneXpert SARS-CoV-2 assay, GeneXpert Xpert Xpress SARS-CoV-2 (Xpert Xpress), is also available. We aimed to assess the feasibility of integrating tuberculosis and COVID-19 testing using one sputum specimen with Xpert Ultra and Xpert Xpress in Lima, Peru.Canadian Institutes of Health Researc

    Antibody tests for identification of current and past infection with SARS-CoV-2

    Get PDF
    Background The diagnostic challenges associated with the COVID‐19 pandemic resulted in rapid development of diagnostic test methods for detecting SARS‐CoV‐2 infection. Serology tests to detect the presence of antibodies to SARS‐CoV‐2 enable detection of past infection and may detect cases of SARS‐CoV‐2 infection that were missed by earlier diagnostic tests. Understanding the diagnostic accuracy of serology tests for SARS‐CoV‐2 infection may enable development of effective diagnostic and management pathways, inform public health management decisions and understanding of SARS‐CoV‐2 epidemiology. Objectives To assess the accuracy of antibody tests, firstly, to determine if a person presenting in the community, or in primary or secondary care has current SARS‐CoV‐2 infection according to time after onset of infection and, secondly, to determine if a person has previously been infected with SARS‐CoV‐2. Sources of heterogeneity investigated included: timing of test, test method, SARS‐CoV‐2 antigen used, test brand, and reference standard for non‐SARS‐CoV‐2 cases. Search methods The COVID‐19 Open Access Project living evidence database from the University of Bern (which includes daily updates from PubMed and Embase and preprints from medRxiv and bioRxiv) was searched on 30 September 2020. We included additional publications from the Evidence for Policy and Practice Information and Co‐ordinating Centre (EPPI‐Centre) ‘COVID‐19: Living map of the evidence’ and the Norwegian Institute of Public Health ’NIPH systematic and living map on COVID‐19 evidence’. We did not apply language restrictions. Selection criteria We included test accuracy studies of any design that evaluated commercially produced serology tests, targeting IgG, IgM, IgA alone, or in combination. Studies must have provided data for sensitivity, that could be allocated to a predefined time period after onset of symptoms, or after a positive RT‐PCR test. Small studies with fewer than 25 SARS‐CoV‐2 infection cases were excluded. We included any reference standard to define the presence or absence of SARS‐CoV‐2 (including reverse transcription polymerase chain reaction tests (RT‐PCR), clinical diagnostic criteria, and pre‐pandemic samples). Data collection and analysis We use standard screening procedures with three reviewers. Quality assessment (using the QUADAS‐2 tool) and numeric study results were extracted independently by two people. Other study characteristics were extracted by one reviewer and checked by a second. We present sensitivity and specificity with 95% confidence intervals (CIs) for each test and, for meta‐analysis, we fitted univariate random‐effects logistic regression models for sensitivity by eligible time period and for specificity by reference standard group. Heterogeneity was investigated by including indicator variables in the random‐effects logistic regression models. We tabulated results by test manufacturer and summarised results for tests that were evaluated in 200 or more samples and that met a modification of UK Medicines and Healthcare products Regulatory Agency (MHRA) target performance criteria. Main results We included 178 separate studies (described in 177 study reports, with 45 as pre‐prints) providing 527 test evaluations. The studies included 64,688 samples including 25,724 from people with confirmed SARS‐CoV‐2; most compared the accuracy of two or more assays (102/178, 57%). Participants with confirmed SARS‐CoV‐2 infection were most commonly hospital inpatients (78/178, 44%), and pre‐pandemic samples were used by 45% (81/178) to estimate specificity. Over two‐thirds of studies recruited participants based on known SARS‐CoV‐2 infection status (123/178, 69%). All studies were conducted prior to the introduction of SARS‐CoV‐2 vaccines and present data for naturally acquired antibody responses. Seventy‐nine percent (141/178) of studies reported sensitivity by week after symptom onset and 66% (117/178) for convalescent phase infection. Studies evaluated enzyme‐linked immunosorbent assays (ELISA) (165/527; 31%), chemiluminescent assays (CLIA) (167/527; 32%) or lateral flow assays (LFA) (188/527; 36%). Risk of bias was high because of participant selection (172, 97%); application and interpretation of the index test (35, 20%); weaknesses in the reference standard (38, 21%); and issues related to participant flow and timing (148, 82%). We judged that there were high concerns about the applicability of the evidence related to participants in 170 (96%) studies, and about the applicability of the reference standard in 162 (91%) studies. Average sensitivities for current SARS‐CoV‐2 infection increased by week after onset for all target antibodies. Average sensitivity for the combination of either IgG or IgM was 41.1% in week one (95% CI 38.1 to 44.2; 103 evaluations; 3881 samples, 1593 cases), 74.9% in week two (95% CI 72.4 to 77.3; 96 evaluations, 3948 samples, 2904 cases) and 88.0% by week three after onset of symptoms (95% CI 86.3 to 89.5; 103 evaluations, 2929 samples, 2571 cases). Average sensitivity during the convalescent phase of infection (up to a maximum of 100 days since onset of symptoms, where reported) was 89.8% for IgG (95% CI 88.5 to 90.9; 253 evaluations, 16,846 samples, 14,183 cases), 92.9% for IgG or IgM combined (95% CI 91.0 to 94.4; 108 evaluations, 3571 samples, 3206 cases) and 94.3% for total antibodies (95% CI 92.8 to 95.5; 58 evaluations, 7063 samples, 6652 cases). Average sensitivities for IgM alone followed a similar pattern but were of a lower test accuracy in every time slot. Average specificities were consistently high and precise, particularly for pre‐pandemic samples which provide the least biased estimates of specificity (ranging from 98.6% for IgM to 99.8% for total antibodies). Subgroup analyses suggested small differences in sensitivity and specificity by test technology however heterogeneity in study results, timing of sample collection, and smaller sample numbers in some groups made comparisons difficult. For IgG, CLIAs were the most sensitive (convalescent‐phase infection) and specific (pre‐pandemic samples) compared to both ELISAs and LFAs (P < 0.001 for differences across test methods). The antigen(s) used (whether from the Spike‐protein or nucleocapsid) appeared to have some effect on average sensitivity in the first weeks after onset but there was no clear evidence of an effect during convalescent‐phase infection. Investigations of test performance by brand showed considerable variation in sensitivity between tests, and in results between studies evaluating the same test. For tests that were evaluated in 200 or more samples, the lower bound of the 95% CI for sensitivity was 90% or more for only a small number of tests (IgG, n = 5; IgG or IgM, n = 1; total antibodies, n = 4). More test brands met the MHRA minimum criteria for specificity of 98% or above (IgG, n = 16; IgG or IgM, n = 5; total antibodies, n = 7). Seven assays met the specified criteria for both sensitivity and specificity. In a low‐prevalence (2%) setting, where antibody testing is used to diagnose COVID‐19 in people with symptoms but who have had a negative PCR test, we would anticipate that 1 (1 to 2) case would be missed and 8 (5 to 15) would be falsely positive in 1000 people undergoing IgG or IgM testing in week three after onset of SARS‐CoV‐2 infection. In a seroprevalence survey, where prevalence of prior infection is 50%, we would anticipate that 51 (46 to 58) cases would be missed and 6 (5 to 7) would be falsely positive in 1000 people having IgG tests during the convalescent phase (21 to 100 days post‐symptom onset or post‐positive PCR) of SARS‐CoV‐2 infection. Authors' conclusions Some antibody tests could be a useful diagnostic tool for those in whom molecular‐ or antigen‐based tests have failed to detect the SARS‐CoV‐2 virus, including in those with ongoing symptoms of acute infection (from week three onwards) or those presenting with post‐acute sequelae of COVID‐19. However, antibody tests have an increasing likelihood of detecting an immune response to infection as time since onset of infection progresses and have demonstrated adequate performance for detection of prior infection for sero‐epidemiological purposes. The applicability of results for detection of vaccination‐induced antibodies is uncertain

    Isoniazid-resistant tuberculosis: A problem we can no longer ignore.

    No full text
    Giorgia Sulis and Madhukar Pai discuss the global distribution, and approaches to diagnosis and treatment, of isoniazid-resistant tuberculosis

    Crossborder travel and multidrugresistant tuberculosis (MDRTB) in Europe

    No full text
    The number of international migrants worldwide has continued to grow rapidly over the past fifteen years and the trend is expected to continue, making the health matters associated with migration a crucial public health challenges faced by governments and societies. Multidrug-resistant tuberculosis is a paradigm of transmissible diseases that do not respect borders and poses a multifaceted and complex challenge on migrant health. The guiding principles for the health response are the respect of equity and human rights as well as the accurate analysis of epidemiological trends and determinants of TB in migrants. The action framework \u201cTowards tuberculosis elimination: an action framework for low-incidence countries\u201d includes regulations for cross border migration among the top eight interventions for TB elimination in low incidence countries. Political commitment is the essential requirement, and currently, the limiting factor, to draft regulations for cross-border collaboration, establish cross-border referral systems with contact tracing and information sharing. The e-platform TB Consilium hosted by European Respiratory Society in collaboration with World Health Organization \u2013 Euro is an example of a tool that can be used to exchange information for clinical management and surveillance

    Tuberculosis: epidemiology and control

    No full text
    despite a regular, although slow, decline in incidence over the last decade, as many as 8.6 million new cases and 1.3 million deaths were estimated to have occurred in 2012. TB is by all means a poverty-related disease, mainly affecting the most vulnerable populations in the poorest countries. The presence of multidrug-resistant strains of M. tuberculosis in most countries, with somewhere prevalence is high, is among the major challenges for TB control, which may hinder recent achievements especially in some settings. Early TB case detection especially in resource-constrained settings and in marginalized groups remains a challenge, and about 3 million people are estimated to remain undiagnosed or not notified and untreated. The World Health Organization (WHO) has recently launched a new global TB strategy for the "post-2015 era" aimed at "ending the global TB epidemic" by 2035. This strategy is based on the three pillars that emphasize patient-centred TB care and prevention, bold policies and supportive systems, and intensified research and innovation. This paper aims to provide an overview of the global TB epidemiology as well as of the main challenges that must be faced to eliminate the disease as a public health problem everywhere
    • 

    corecore