8,926 research outputs found

    Functional Derivative of the Zero Point Energy Functional from the Strong Interaction Limit of Density Functional Theory

    Get PDF
    We derive an explicit expression for the functional derivative of the subleading term in the strong interaction limit expansion of the generalized Levy--Lieb functional for the special case of two electrons in one dimension. The expression is derived from the zero point energy (ZPE) functional, which is valid if the quantum state reduces to strongly correlated electrons in the strong coupling limit. The explicit expression is confirmed numerically and respects the relevant sum-rule. We also show that the ZPE potential is able to generate a bond mid-point peak for homo-nuclear dissociation and is properly of purely kinetic origin. Unfortunately, the ZPE diverges for Coulomb systems, whereas the exact peaks should be finite.Comment: 12 pages, 7 figure

    Decoherence-assisted transport and quantum criticalities

    Get PDF
    We study the dynamics of a two-level quantum system interacting with an external environment that takes the form of an XY spin chain in the presence of an external magnetic field. While the presence of the bath itself can enhance the transition probability from the lower level to the upper level of the system, we show that this noise-assisted phenomenon is sensitive to a change of the quantum phase of the environment. The derivative of the transition probability displays a maximum in correspondence with the critical value of the applied field both in the case of isotropic and anisotropic chains

    Power calculation for gravitational radiation: oversimplification and the importance of time scale

    Full text link
    A simplified formula for gravitational-radiation power is examined. It is shown to give completely erroneous answers in three situations, making it useless even for rough estimates. It is emphasized that short timescales, as well as fast speeds, make classical approximations to relativistic calculations untenable.Comment: Three pages, no figures, accepted for publication in Astronomische Nachrichte

    Exchange-correlation functionals from the strongly-interacting limit of DFT: Applications to model chemical systems

    Full text link
    We study model one-dimensional chemical systems (representative of their three-dimensional counterparts) using the strictly-correlated electrons (SCE) functional, which, by construction, becomes asymptotically exact in the limit of infinite coupling strength. The SCE functional has a highly non-local dependence on the density and is able to capture strong correlation within Kohn- Sham theory without introducing any symmetry breaking. Chemical systems, however, are not close enough to the strong-interaction limit so that, while ionization energies and the stretched H2 molecule are accurately described, total energies are in general way too low. A correction based on the exact next leading order in the expansion at infinite coupling strength of the Hohenberg-Kohn functional largely improves the results.Comment: 9 pages, 6 figures. Submitted to PCCP's Themed Collection on Density Functional Theory and its Application

    Radiative emission of solar features in Ca II K

    Full text link
    We investigated the radiative emission of different types of solar features in the spectral range of the Ca II K line. We analyzed full-disk 2k x 2k observations from the PSPT Precision Solar Photometric Telescope. The data were obtained by using three narrow-band interference filters that sample the Ca II K line with different pass bands. Two filters are centered in the line core, the other in the red wing of the line. We measured the intensity and contrast of various solar features, specifically quiet Sun (inter-network), network, enhanced network, plage, and bright plage (facula) regions. Moreover, we compared the results obtained with those derived from the numerical synthesis performed for the three PSPT filters with a widely used radiative code on a set of reference semi-empirical atmosphere models.Comment: In Proceedings of the 25th NSO Workshop: Chromospheric Structure and Dynamic

    Robustness of different indicators of quantumness in the presence of dissipation

    Get PDF
    The dynamics of a pair of coupled harmonic oscillators in separate or common thermal environments is studied, focusing on different indicators of quantumness, such as entanglement, twin oscillators correlations and quantum discord. We compare their decay under the effect of dissipation and show, through a phase diagram, that entanglement is more likely to survive asymptotically than twin oscillators correlations

    Spin Resolution of the Electron-Gas Correlation Energy: Positive same-spin contribution

    Full text link
    The negative correlation energy per particle of a uniform electron gas of density parameter rsr_s and spin polarization ζ\zeta is well known, but its spin resolution into up-down, up-up, and down-down contributions is not. Widely-used estimates are incorrect, and hamper the development of reliable density functionals and pair distribution functions. For the spin resolution, we present interpolations between high- and low-density limits that agree with available Quantum Monte Carlo data. In the low-density limit for ζ=0\zeta = 0, we find that the same-spin correlation energy is unexpectedly positive, and we explain why. We also estimate the up and down contributions to the kinetic energy of correlation.Comment: new version, to appear in PRB Rapid Communicatio

    Droplet minimizers for the Gates-Lebowitz-Penrose free energy functional

    Full text link
    We study the structure of the constrained minimizers of the Gates-Lebowitz-Penrose free-energy functional FGLP(m){\mathcal F}_{\rm GLP}(m), non-local functional of a density field m(x)m(x), x∈TLx\in {\mathcal T}_L, a dd-dimensional torus of side length LL. At low temperatures, FGLP{\mathcal F}_{\rm GLP} is not convex, and has two distinct global minimizers, corresponding to two equilibrium states. Here we constrain the average density L^{-d}\int_{{\cal T}_L}m(x)\dd x to be a fixed value nn between the densities in the two equilibrium states, but close to the low density equilibrium value. In this case, a "droplet" of the high density phase may or may not form in a background of the low density phase, depending on the values nn and LL. We determine the critical density for droplet formation, and the nature of the droplet, as a function of nn and LL. The relation between the free energy and the large deviations functional for a particle model with long-range Kac potentials, proven in some cases, and expected to be true in general, then provides information on the structure of typical microscopic configurations of the Gibbs measure when the range of the Kac potential is large enough

    Properties of short-range and long-range correlation energy density functionals from electron-electron coalescence

    Full text link
    The combination of density functional theory with other approaches to the many-electron problem through the separation of the electron-electron interaction into a short-range and a long-range contribution is a promising method, which is raising more and more interest in recent years. In this work some properties of the corresponding correlation energy functionals are derived by studying the electron-electron coalescence condition for a modified (long-range-only) interaction. A general relation for the on-top (zero electron-electron distance) pair density is derived, and its usefulness is discussed with some examples. For the special case of the uniform electron gas, a simple parameterization of the on-top pair density for a long-range only interaction is presented and supported by calculations within the ``extended Overhauser model''. The results of this work can be used to build self-interaction corrected short-range correlation energy functionals.Comment: revised version, to appear in Phys. Rev.
    • …
    corecore