11,893 research outputs found

    Multi-Wavelength Properties of Barred Galaxies in the Local Universe. I: Virgo Cluster

    Full text link
    We study in detail how the barred galaxy fraction varies as a function of luminosity, HI gas mass, morphology and color in the Virgo cluster in order to provide a well defined, statistically robust measurement of the bar fraction in the local universe spanning a wide range in luminosity (factor of ~100) and HI gas mass. We combine multiple public data-sets (UKIDSS near-infrared imaging, ALFALFA HI gas masses, GOLDMine photometry). After excluding highly inclined systems, we define three samples where galaxies are selected by their B-band luminosity, H-band luminosity, and HI gas mass. We visually assign bars using the high resolution H-band imaging from UKIDSS. When all morphologies are included, the barred fraction is ~17-24% while for morphologically selected discs, we find that the barred fraction in Virgo is ~29-34%: it does not depend strongly on how the sample is defined and does not show variations with luminosity or HI gas mass. The barred fraction depends most strongly on the morphological composition of the sample: when the disc populations are separated into lenticulars (S0--S0/a), early-type spirals (Sa--Sb), and late-type spirals (Sbc--Sm), we find that the early-type spirals have a higher barred fraction (~45-50%) compared to the lenticulars and late-type spirals (~22-36%). This difference may be due to the higher baryon fraction of early-type discs which makes them more susceptible to bar instabilities. We do not find any evidence of barred galaxies being preferentially blue.Comment: 13 pages, 14 figures. Submitted to Ap

    Scaling relations of the colour-detected cluster RzCS 052 at z=1.016 and of some other high redshift clusters

    Full text link
    We report on the discovery of the z=1.016 cluster RzCS 052 using a modified red sequence method, followup spectroscopy and X-ray imaging. This cluster has a velocity dispersion of 710+-150 km/s, a virial mass of 4.0e14 Msol (based on 21 spectroscopically confirmed members) and an X-ray luminosity of (0.68+- 0.47)e44 ergs/s in the [1-4] keV band. This optically selected cluster appears to be of richness class 3 and to follow the known L_X-sigma_v relation for high redshift X-ray selected clusters. Using these data, we find that the halo occupation number for this cluster is only marginally consistent with what expected assuming a self-similar evolution of cluster scaling relations, suggesting perhaps a break of them at z~1. We also rule out a strong galaxy merging activity between z=1 and today. Finally, we present a Bayesian approach to measuring cluster velocity dispersions and X-ray luminosities in the presence of a background: we critically reanalyze recent claims for X-ray underluminous clusters using these techniques and find that the clusters can be accommodated within the existing L_X -sigma_v relation.Comment: MNRAS, in pres

    Effects of Domain Wall on Electronic Transport Properties in Mesoscopic Wire of Metallic Ferromagnets

    Full text link
    We study the effect of the domain wall on electronic transport properties in wire of ferromagnetic 3dd transition metals based on the linear response theory. We considered the exchange interaction between the conduction electron and the magnetization, taking into account the scattering by impurities as well. The effective electron-wall interaction is derived by use of a local gauge transformation in the spin space. This interaction is treated perturbatively to the second order. The conductivity contribution within the classical (Boltzmann) transport theory turns out to be negligiblly small in bulk magnets, due to a large thickness of the wall compared with the fermi wavelength. It can be, however, significant in ballistic nanocontacts, as indicated in recent experiments. We also discuss the quantum correction in disordered case where the quantum coherence among electrons becomes important. In such case of weak localization the wall can contribute to a decrease of resistivity by causing dephasing. At lower temperature this effect grows and can win over the classical contribution, in particular in wire of diameter L⊥≲ℓϕL_{\perp}\lesssim \ell_{\phi}, ℓϕ\ell_{\phi} being the inelastic diffusion length. Conductance change of the quantum origin caused by the motion of the wall is also discussed.Comment: 30 pages, 4 figures. Detailed paper of Phys. Rev. Lett. 78, 3773 (1997). Submitted to J. Phys. Soc. Jp

    Project DIANA - Converging and Integrating IP and ATM for real-time applications

    Get PDF
    The evolution of IP and ATM share some common drivers. Both of them are addressing efficient network resource utilisation. In order to evaluate the options and combinations offered by these technologies the DIANA project is looking into the areas where ATM and IP both overlap and complete each other, that is QoS interworking between ATM and IP. This is achieved by investigating RSVP-over-ATM approach. This solution is compared with two IP level approaches: Differentiated Services and Scalable Resource Reservation Protocol (SRP)

    Elastic properties of hydrogenated graphene

    Full text link
    There exist three conformers of hydrogenated graphene, referred to as chair-, boat-, or washboard-graphane. These systems have a perfect two-dimensional periodicity mapped onto the graphene scaffold, but they are characterized by a sp3sp^3 orbital hybridization, have different crystal symmetry, and otherwise behave upon loading. By first principles calculations we determine their structural and phonon properties, as well as we establish their relative stability. Through continuum elasticity we define a simulation protocol addressed to measure by a computer experiment their linear and nonlinear elastic moduli and we actually compute them by first principles. We argue that all graphane conformers respond to any arbitrarily-oriented extention with a much smaller lateral contraction than the one calculated for graphene. Furthermore, we provide evidence that boat-graphane has a small and negative Poisson ratio along the armchair and zigzag principal directions of the carbon honeycomb lattice (axially auxetic elastic behavior). Moreover, we show that chair-graphane admits both softening and hardening hyperelasticity, depending on the direction of applied load.Comment: submitted on Phys.Rev.

    P-wave Pairing and Colossal Magnetoresistance in Manganese Oxides

    Full text link
    We point out that the existing experimental data of most manganese oxides show the {\sl frustrated} p-wave superconducting condensation in the ferromagnetic phase in the sense that the superconducting coherence is not long enough to cover the whole system. The superconducting state is similar to the A1A_{1} state in superfluid He-3. The sharp drop of resistivity, the steep jump of specific heat, and the gap opening in tunneling are well understood in terms of the p-wave pairing. In addition, colossal magnetoresistance (CMR) is naturally explained by the superconducting fluctuations with increasing magnetic fields. The finite resistivity may be due to some magnetic inhomogeneities. This study leads to the possibility of room temperature superconductivity.Comment: LaTex, 14 pages, For more information, please send me an e-mail. e-mail adrress : [email protected]

    Infinitesimals without Logic

    Full text link
    We introduce the ring of Fermat reals, an extension of the real field containing nilpotent infinitesimals. The construction takes inspiration from Smooth Infinitesimal Analysis (SIA), but provides a powerful theory of actual infinitesimals without any need of a background in mathematical logic. In particular, on the contrary with respect to SIA, which admits models only in intuitionistic logic, the theory of Fermat reals is consistent with classical logic. We face the problem to decide if the product of powers of nilpotent infinitesimals is zero or not, the identity principle for polynomials, the definition and properties of the total order relation. The construction is highly constructive, and every Fermat real admits a clear and order preserving geometrical representation. Using nilpotent infinitesimals, every smooth functions becomes a polynomial because in Taylor's formulas the rest is now zero. Finally, we present several applications to informal classical calculations used in Physics: now all these calculations become rigorous and, at the same time, formally equal to the informal ones. In particular, an interesting rigorous deduction of the wave equation is given, that clarifies how to formalize the approximations tied with Hook's law using this language of nilpotent infinitesimals.Comment: The first part of the preprint is taken directly form arXiv:0907.1872 The second part is new and contains a list of example
    • …
    corecore